(I)解不等式-x2+4x+5<0;
(Ⅱ)若不等式mx2-mx+1>0,對任意實數(shù)x都成立,求m的取值范圍.
(Ⅰ)不等式可化為:x2-4x-5>0
因△=16+20>0,方x2-4x-5=0有兩個實數(shù)根,即x1=5,x2=-1…(3分)
所以原不等式的解集是{x|x<-1或x>5}…(5分)
(Ⅱ)當m=0時,代入不等式可得1>0,當然不等式成立,所以m=0符合題意  …(6分)
當m≠0時,則有
m>0
△<0
,即
m>0
△=(-m)2-4m<0
,解得  0<m<4…(8分)
∴m的取值范圍{m|0≤m<4}  …(10分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(I)解不等式-x2+4x+5<0;
(Ⅱ)若不等式mx2-mx+1>0,對任意實數(shù)x都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(I)解不等式-x2+4x+5<0;
(Ⅱ)若不等式mx2-mx+1>0,對任意實數(shù)x都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省安康市寧陜中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

(I)解不等式-x2+4x+5<0;
(Ⅱ)若不等式mx2-mx+1>0,對任意實數(shù)x都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省安康市寧陜中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

(I)解不等式-x2+4x+5<0;
(Ⅱ)若不等式mx2-mx+1>0,對任意實數(shù)x都成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案