已知函數(shù)f(x)=2cos2x+
3
sin2x,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變得到函數(shù)h(x)的圖象,再將h(x)的圖象向右平衡移
π
3
個(gè)單位得到g(x)的圖象,求函數(shù)g(x)的解析式,并求g(x)在[0,π]上的值域.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:(1)首先,根據(jù)二倍角公式和輔助角公式,化簡(jiǎn)函數(shù),然后,借助于三角函數(shù)的圖象與性質(zhì)進(jìn)行求解;
(2)根據(jù)圖象平移知識(shí)求解即可.
解答: 解:(1)∵f(x)=2os2x+
3
sin2x
=1+cos2x+
3
sin2x
=2sin(2x+
π
6
)+1,
∵-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ,k∈Z,
∴kπ-
π
3
≤x≤kπ+
π
6
,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間[kπ-
π
3
,kπ+
π
6
],(k∈Z)
(2)∵f(x)=2sin(2x+
π
6
)+1,
函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,
∴h(x)=2sin(x+
π
6
)+1,
h(x)的圖象向右平衡移
π
3
個(gè)單位得到g(x)的圖象,
∴g(x)=2sin(x-
π
6
)+1,
∵x∈[0,π],
∴sin(x-
π
6
)∈[-
1
2
,1],
∴g(x)在[0,π]上的值域[0,3].
點(diǎn)評(píng):本題綜合考查了三角公式的靈活運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d=2,則a4=( 。
A、5B、6C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
p
=(1+
3
cos2x,1),
q
=(-1,sin2x+n)(x∈R,n∈N*),且f(x)=
p
q

(Ⅰ)在銳角△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且c=3,△ABC的面積為3
3
,當(dāng)n=1時(shí),f(A)=
3
,求a的值.
(Ⅱ)若x∈[0,
π
2
]時(shí),f(x)的最大值為an(an為數(shù)列{an}的通項(xiàng)公式),又?jǐn)?shù)列{bn}滿(mǎn)足bn=
1
an-1an
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-
3
2
ax2+a(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,2]上的最小值;
(Ⅲ)是否存在實(shí)數(shù)a使得函數(shù)f(x)在區(qū)間(-1,2)上既存在最大值又存在最小值,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓C的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù))
(Ⅰ)判斷直線(xiàn)l圓C的位置關(guān)系;
(Ⅱ)若橢圓的參數(shù)方程為
x=2cosφ
y=
3
sinφ
(φ為參數(shù)),過(guò)圓C的圓心且與直線(xiàn)l垂直的直線(xiàn)l′與橢圓相交于兩點(diǎn)A、B,求|CA|•|CB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)隨機(jī)調(diào)查我校高三100名學(xué)生在高二文理分科是否與性別有關(guān),得到如下的列聯(lián)表:(單位:人)
性別\
理\
總計(jì)
選理科 40 20 60
選文科 10 30 40
總計(jì) 50 50 100
(1)從這50名女生中按文理采取分層抽樣,抽取一個(gè)容量為5的樣本,問(wèn)樣本中文科生與理科生各多少人?
(2)從(1)中抽到的5名女生中隨機(jī)選取兩名訪談,求選到文科生、理科生各一名的概率;
(3)根據(jù)以上列聯(lián)表;問(wèn)有多大把握認(rèn)為“文理分科與性別”有關(guān)?
統(tǒng)計(jì)量k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
概率表:
P(k2≥k0 0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,橢圓的離心率為
1
2
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為4
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)右焦點(diǎn)F2作斜率為K的直線(xiàn)L與橢圓C交M、N兩點(diǎn),在y軸上是否存在點(diǎn)P(0,m)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了檢測(cè)某種產(chǎn)品的質(zhì)量,抽取了一個(gè)容量為100的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如表.根據(jù)以上數(shù)表繪制相應(yīng)的頻率分布直方圖時(shí),落在[10.95,11.15)范圍內(nèi)的矩形的高應(yīng)為
 

分組 頻數(shù)
[10.75,11.95) 12
[10.95,11.15) 29
[11.15,11.35) 46
[11.35,11.55) 11
[11.55,11.75) 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠甲、乙、丙三個(gè)車(chē)間生產(chǎn)同一產(chǎn)品,數(shù)量分別為120件,90件,60件.為了解它們的產(chǎn)品質(zhì)量是否有顯著差異,用分層抽樣方法抽取了一個(gè)容量為n的樣本進(jìn)行調(diào)查,其中從丙車(chē)間的產(chǎn)品中抽取了4件,則n=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案