【題目】已知函數(shù).
(1)討論在上的單調(diào)性;
(2)是否存在實數(shù),使得在上的最大值為,若存在,求滿足條件的的個數(shù);若不存在,請說明理由.
【答案】(1)見解析;(2)1個
【解析】試題分析:(1)求導數(shù)可得,對a進行分類討論得:①當時, 在上單調(diào)遞增,②當或時, 在上單調(diào)遞減,③當且時, 在上單調(diào)遞增,在上單調(diào)遞減。(2)結(jié)合(1)可得當時, ,故有,即,可判斷方程只有1個實數(shù)解,所以存在滿足條件的實數(shù)a,且只有1個。
試題解析:
(1)∵,
∴,
①當時, 在上單調(diào)遞增。
②當,即或時, ,
∴在上單調(diào)遞減。
③當且時,
由 得.
令得;令得.
∴在上單調(diào)遞增,在上單調(diào)遞減.
綜上,當時, 在上遞增;
當或時, 在上遞減;
當且時, 在上遞增,在上遞減.
(2)易知,由(1)知在上單調(diào)遞增,在上單調(diào)遞減,
∴ 當時, 有極大值,也為最大值,且
由題意得 ,
即,
設,易知為增函數(shù),且,
∴的唯一零點在上,
∴ 方程有唯一解,
∴ 存在實數(shù)滿足條件,且實數(shù)的個數(shù)為1個.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l經(jīng)過點P(﹣2,5),且斜率為﹣
(1)求直線l的方程;
(2)若直線m與l平行,且點P到直線m的距離為3,求直線m的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列滿足,數(shù)列的前項和為,且滿足.
(1)求數(shù)列和的通項公式;
(2)數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為常數(shù)
(1)當在處取得極值時,若關于x的方程 在上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.
(2)若對任意的,總存在,使不等式 成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓M:: + =1(a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)求橢圓方程;
(2)當直線l的傾斜角為45°時,求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ax3﹣3x+1 對于x∈[﹣1,1]總有f(x)≥0成立,則a 的取值范圍為( )
A.[2,+∞)
B.[4,+∞)
C.{4}
D.[2,4]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用五點法作函數(shù)y=2sin(2x+ )的簡圖;并求函數(shù)的單調(diào)減區(qū)間以及函數(shù)取得最大值時x的取值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年的三月十二日,是中國的植樹節(jié),林管部門在植樹前,為保證樹苗的質(zhì)量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲、乙兩批樹苗中各抽測了10株樹苗的高度,規(guī)定高于128厘米的為“良種樹苗”,測得高度如下(單位:厘米)
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)根據(jù)抽測結(jié)果,完成答題卷中的莖葉圖,并根據(jù)你填寫的莖葉圖,對甲、乙兩批樹苗的高度作比較,寫出對兩種樹苗高度的統(tǒng)計結(jié)論;
(2)設抽測的10株甲種樹苗高度平均值為 ,將這10株樹苗的高度依次輸入按程序框圖進行運算,
(如圖)問輸出的S大小為多少?并說明S的統(tǒng)計學意義.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com