在下列命題中:
①若兩個非零向量
a
b
共線則
a
,
b
所在的直線平行;
②若
a
,
b
所在的直線是異面直線,則
a
,
b
一定不共面;
③若
a
b
,
c
三向量兩兩共面,則
a
,
b
,
c
三向量一定也共面;
④若
a
,
b
,
c
是三個非零向量,則空間任意一個向量p總可以唯一表示為
p
=x
a
+y
b
+z
c
(x,y,z∈R).
其中正確命題的個數(shù)為( 。
A、0B、1C、2D、3
分析:利用兩向量平行?兩線平行或重合;任兩向量通過平移都可以到一個平面上;通過舉反例對各命題進行判斷
解答:解:對于①,若兩個非零向量
a
b
共線則
a
,
b
所在的直線平行或重合,故①錯
對于②,由于向量具有平移的性質(zhì),故任意的兩個向量都是共面向量,故②錯
對于③,例如長方體的任三條側(cè)棱對應(yīng)的向量共面,但這三條側(cè)棱不共面,故③錯
對于④,根據(jù)空間向量的基本定理及其意義,必須是三個非零向量不共面,故④錯
故選A
點評:本題考查空間向量的基本定理及其意義、共線向量的幾何意義;向量的平移性質(zhì);共面向量的定義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在下列命題中:①已知兩條不同直線m、n兩上不同平面α,β,m⊥α,n⊥β,m⊥n,則α⊥β;②函數(shù)y=sin(2x-
π
6
)圖象的一個對稱中心為點(
π
3
,0);③若函數(shù)f(x)在R上滿足f(x+1)=
1
f(x)
,則f(x)是周期為2的函數(shù);④在△ABC中,若
OA
+
OB
=2
CO
,則S△ABC=S△BOC其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l,m,n和平面α,β,在下列命題中真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在下列命題中:①已知兩條不同直線m、n兩上不同平面α,β,m⊥α,n⊥β,m⊥n,則α⊥β;②函數(shù)y=sin(2x-數(shù)學公式)圖象的一個對稱中心為點(數(shù)學公式,0);③若函數(shù)f(x)在R上滿足f(x+1)=數(shù)學公式,則f(x)是周期為2的函數(shù);④在△ABC中,若數(shù)學公式,則S△ABC=S△BOC其中正確命題的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省高考數(shù)學模擬試卷1(文科)(解析版) 題型:解答題

在下列命題中:①已知兩條不同直線m、n兩上不同平面α,β,m⊥α,n⊥β,m⊥n,則α⊥β;②函數(shù)y=sin(2x-)圖象的一個對稱中心為點(,0);③若函數(shù)f(x)在R上滿足f(x+1)=,則f(x)是周期為2的函數(shù);④在△ABC中,若,則S△ABC=S△BOC其中正確命題的序號為   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列命題中:

①已知兩條不同直線,兩個不同平面

②函數(shù)圖象的一個對稱中心為點;

③若函數(shù)在R上滿足,則是周期為4的函數(shù);

④在,則;

其中正確命題的序號為_________________________________。

查看答案和解析>>

同步練習冊答案