求兩焦點的坐標分別為(-2,0),(2,0),且經過點P(2,
)的橢圓方程.
橢圓方程是
由題意可知,c=2,設橢圓方程為
,則
①
又點P(2,
)在橢圓上,所以
②,
聯(lián)立①②解得,
或
(舍去),
故所求橢圓方程是
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在橢圓
中,F(xiàn)
1,F(xiàn)
2分別為橢圓的左、右焦點,B、D分別
為橢圓的左、右頂點,A為橢圓在第一象限內的一點,直線AF
1交橢圓于另
一點C,交y軸于點E,且點F
1、F
2三等分線段BD.
(1)求
的值;
(2)若四邊形EBCF
2為平行四邊形,求點C的坐標;
(3)當
時,求直線AC的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的焦距是2,則
m的值為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
直角三角形
的直角頂點
為動點,
,
為兩個定點,作
于
,動點
滿足
,當點
運動時,設點
的軌跡為曲線
,曲線
與
軸正半軸的交點為
.
(Ⅰ) 求曲線
的方程;
(Ⅱ) 是否存在方向向量為
m的直線
,與曲線
交于
,
兩點,且
與
的夾角為
?若存在,求出所有滿足條件的直線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知圓
,定點A(3,0),M為圓C上一動點,點P在AM上,點N在CM上,且滿足
,點N的軌跡為曲線E。
(1)求曲線E的方程;
(2)求過點Q(2,1)的弦的中點的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知直線
與橢圓
相交于A、B兩點,且線段AB的中點,在直線
上.(1)求此橢圓的離心率;(2)若橢圓的右焦點關于直線
的對稱點的在圓
上,求此橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖,中心在原點O的橢圓的右焦點為F(3,0),
右準線l的方程為:x = 12。
(1)求橢圓的方程;(4分)
(2)在橢圓上任取三個不同點
,使
,
證明:
為定值,并求此定值。(8分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知直線
的右焦點
F,且交橢圓
C于
A,
B兩點,點
A,
F,
B在直線
上的射影依次為點
D,
K,
E.
(1)若拋物線
的焦點為橢圓
C的上頂點,求橢圓
C的方程;
(2)對于(1)中的橢圓
C,若直線
L交
y軸于點
M,且
,當
m變化時,求
的值;
(3)連接
AE,
BD,試探索當
m變化時,直線
AE、
BD是否相交于一定點
N?若交于定點
N,請求出
N點的坐標,并給予證明;否則說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
化簡方程
+
=10為不含根式的形式是( )
查看答案和解析>>