【題目】函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,給出下列命題:
①-3是函數(shù)y=f(x)的極值點(diǎn);
②-1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在區(qū)間(-3,1)上單調(diào)遞增;
④y=f(x)在x=0處切線的斜率小于零.
以上正確命題的序號(hào)是( )
A. ①②B. ③④C. ①③D. ②④
【答案】C
【解析】
試題根據(jù)導(dǎo)函數(shù)圖象可判定導(dǎo)函數(shù)的符號(hào),從而確定函數(shù)的單調(diào)性,得到極值點(diǎn),以及根據(jù)導(dǎo)數(shù)的幾何意義可知在某點(diǎn)處的導(dǎo)數(shù)即為在該點(diǎn)處的切線斜率.
根據(jù)導(dǎo)函數(shù)圖象可知:當(dāng)x∈(-∞,-3)時(shí),f'(x)<0,在x∈(-3,1)時(shí),
∴函數(shù)y=f(x)在(-∞,-3)上單調(diào)遞減,在(-3,1)上單調(diào)遞增,故③正確;
則-3是函數(shù)y=f(x)的極小值點(diǎn),故①正確;
∵在(-3,1)上單調(diào)遞增∴-1不是函數(shù)y=f(x)的最小值點(diǎn),故②不正確;
∵函數(shù)y=f(x)在x=0處的導(dǎo)數(shù)大于0∴切線的斜率大于零,故④不正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),則下列結(jié)論正確的是__________.(寫出所有正確的編號(hào))①的最小正周期為;②在區(qū)間上單調(diào)遞增;③取得最大值的的集合為 ④將的圖像向左平移個(gè)單位,得到一個(gè)奇函數(shù)的圖像
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】射擊測(cè)試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測(cè)試?yán)塾?jì)得分,如果的值不低于3分就認(rèn)為通過(guò)測(cè)試,立即停止射擊;否則繼續(xù)射擊,但一次測(cè)試最多打靶3次,每次射擊的結(jié)果相互獨(dú)立。
(1)如果該射手選擇方案1,求其測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望E;
(2)該射手選擇哪種方案通過(guò)測(cè)試的可能性大?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以為頂點(diǎn)的五面體中,底面是矩形, .
(1)證明: 平面;
(2)在中國(guó)古代數(shù)學(xué)經(jīng)典著作《九章算術(shù)》中,稱圖中所示的五面體為“芻甍”(chúméng),書中將芻甍的體積求法表述為:
術(shù)曰:倍下袤,上袤從之,以廣乘之,又以高乘之,六而一.其意思是:若芻甍的“下袤” 的長(zhǎng)為,“上袤” 的長(zhǎng)為,“廣” 的長(zhǎng)為,“高”即“點(diǎn)到平面的距離”為,則芻甍的體積的計(jì)算公式為: ,證明該體積公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市交管部門為了宣傳新交規(guī)舉辦交通知識(shí)問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣,回答問(wèn)題統(tǒng)計(jì)結(jié)果如圖表所示.
組別 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的概率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 0.9 | |
第3組 | [35,45) | 27 | |
第4組 | [45,55) | 0.36 | |
第5組 | [55,65) | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知曲線,直線過(guò)定點(diǎn)(—2,2),且斜率為.以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的直角坐標(biāo)方程以及直線l的參數(shù)方程;
(2)點(diǎn)P在曲線上,當(dāng)時(shí),求點(diǎn)P到直線l的最小距離并求點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線平行于軸.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com