已知圓M:(x-m)2+(y-n)2=4(m,n∈R),圓M與y軸交于A,B兩點(diǎn),若|
MA
+
MB
|=2
,則|
AB|
=
2
3
2
3
分析:設(shè)AB的中點(diǎn)為C,連結(jié)CM,利用平面向量的加法法則和垂徑定理,結(jié)合題中數(shù)據(jù)在Rt△ACM中算出AC長(zhǎng),即可得到向量
AB
的模.
解答:解:設(shè)AB的中點(diǎn)為C,連結(jié)CM,
由平面向量的加法法則,可得
MA
+
MB
=2
MC

|
MA
+
MB
|=2
,∴
|MC|
=1
∵AB是圓M的弦,C為AB中點(diǎn),∴CM⊥AB,
由圓的方程得圓半徑為2,
Rt△ACM中,|
AC
|
=
AM
2
-
MC
2
=
22-12
=
3
,可得|
AB
|=2|
AC
|
=2
3

故答案為:2
3
點(diǎn)評(píng):本題給出圓的弦AB滿(mǎn)足的向量式,求弦AB的長(zhǎng).著重考查了圓的性質(zhì)、平面向量的加法法則和勾股定理等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:(x-m)2+(y-n)22及定點(diǎn)N(1,0),點(diǎn)P是圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿(mǎn)足
NP
=2
NQ
,
GQ
NP
=0.
(Ⅰ)若m=-1,n=0,r=4,求點(diǎn)G的軌跡C的方程;
(Ⅱ)若動(dòng)圓M和(Ⅰ)中所求軌跡C相交于不同兩點(diǎn)A、B,是否存在一組正實(shí)數(shù)m,n,r使得直線(xiàn)MN垂直平分線(xiàn)段AB,若存在,求出這組正實(shí)數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:(x+
5
2+y2=36,定點(diǎn)N(
5
,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿(mǎn)足
NP
=2
NQ
,
GQ
NP
=0.
(I)求點(diǎn)G的軌跡C的方程;
(II)點(diǎn)F(x,y)在軌跡C上,求2x2+y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市鐵一中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知圓M:(x-m)2+(y-n)22及定點(diǎn)N(1,0),點(diǎn)P是圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿(mǎn)足=2,=0.
(Ⅰ)若m=-1,n=0,r=4,求點(diǎn)G的軌跡C的方程;
(Ⅱ)若動(dòng)圓M和(Ⅰ)中所求軌跡C相交于不同兩點(diǎn)A、B,是否存在一組正實(shí)數(shù)m,n,r使得直線(xiàn)MN垂直平分線(xiàn)段AB,若存在,求出這組正實(shí)數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南省鄭州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知圓M:(x-m)2+(y-n)22及定點(diǎn)N(1,0),點(diǎn)P是圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿(mǎn)足=2,=0.
(Ⅰ)若m=-1,n=0,r=4,求點(diǎn)G的軌跡C的方程;
(Ⅱ)若動(dòng)圓M和(Ⅰ)中所求軌跡C相交于不同兩點(diǎn)A、B,是否存在一組正實(shí)數(shù)m,n,r使得直線(xiàn)MN垂直平分線(xiàn)段AB,若存在,求出這組正實(shí)數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案