如圖,直線與橢圓交于兩點(diǎn),記的面積為

(I)求在的條件下,的最大值;

(II)當(dāng)時(shí),求直線的方程.

21(Ⅰ)解:設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,……1分

,解得,……3分

所以.…5分

當(dāng)且僅當(dāng)時(shí),取到最大值.…6分

(Ⅱ)解:由……7分

,①……8分

.②  …9分

設(shè)的距離為,則,又因?yàn)?sub>,

所以,……10分

代入②式并整理,得,解得,代入①式檢驗(yàn),

故直線的方程是,或.……14分(一條直線1分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年雅禮中學(xué)月考理)(13分)

已知是橢圓的頂點(diǎn)(如圖),直線與橢圓交于異于頂點(diǎn)的兩點(diǎn),且.若橢圓的離心率是,且

(1)求此橢圓的方程;

(2)設(shè)直線和直線的傾斜角分別

.試判斷是否為定值?若是,求出此定值;若不是,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線與橢圓交于兩點(diǎn),記的面積為

(I)求在,的條件下,的最大值;

(II)當(dāng),時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年浙江卷)(14分)如圖,直線與橢圓交于兩點(diǎn),記的面積為

(I)求在,的條件下,的最大值;

(II)當(dāng),時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(20)如圖,直線與橢圓交于兩點(diǎn),記的面積為.

(I)求在的條件下,的最大值;

(II)當(dāng),時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(浙江) 題型:解答題

(本題14分)如圖,直線與橢圓交于兩點(diǎn),記的面積為

(I)求在,的條件下,的最大值;

(II)當(dāng)時(shí),求直線的方程.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案