已知M(x,y)為由不等式組
0≤x≤
2
y≤2
x≤
2
y
,所確定的平面區(qū)域上的動點(diǎn),若點(diǎn)A(
2
,1)
,則z=
OM
OA
的最大值為( 。
A、3
B、3
2
C、4
D、4
2
考點(diǎn):簡單線性規(guī)劃
專題:數(shù)形結(jié)合,平面向量及應(yīng)用
分析:由約束條件作出可行域,化向量數(shù)量積為線性目標(biāo)函數(shù),數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件
0≤x≤
2
y≤2
x≤
2
y
作出可行域如圖,

A(
2
,1)
,M(x,y),
z=
OM
OA
=
2
x+y
,化為y=-
2
x+z

由圖可知,當(dāng)直線y=-
2
x+z
過B(
2
,2
)時,
z有最大值為:
2
×
2
+2=4

故選:C.
點(diǎn)評:本題考查了簡單的線性規(guī)劃,考查了平面向量的數(shù)量積,訓(xùn)練了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知log427=a,log52=b,求lg2,lg3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,若a,b在區(qū)間(0,π),且sina+sinb=sina•sinb,求cos(a-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,假設(shè)冰淇淋融化后體積不變,是否會溢出杯子?請說明理由.請用你的計(jì)算數(shù)據(jù)說明理由.(冰、水的體積差異忽略不計(jì))(π取3.14)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(sinx-1,1),
b
=(sinx+3,1),
c
=(-1,-2),
d
=(k,1),k∈R.
(Ⅰ)若x∈[-
π
2
,
π
2
],且
a
∥(
b
+
c
),求x的值;
(Ⅱ)若存在x∈R,使得(
a
+
d
)⊥(
b
+
c
),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=kx-lnx在區(qū)間(1,+∞)單調(diào)遞增,則k的取值范圍是(  )
A、(-∞,-2]
B、(-∞,-1]
C、[2,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知在正方體ABCD-A1B1C1D1中,面對角線A1B、BC1的中點(diǎn)為E、F,求證:EF∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos2xcos
π
5
-2sinxcosxsin
5
的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(x,y),
b
=(-1,2),且
a
+
b
=(1,3),則|
a
-2
b
|=
 

查看答案和解析>>

同步練習(xí)冊答案