7、已知等差數(shù)列{an}中,a5+a9-a7=10,記Sn=a1+a2+…+an,則S13的值為( 。
分析:利用a5+a9-a7=10求出a7的值,把S13的13項中項數(shù)相加為14的項結合在一起,根據(jù)等差數(shù)列的性質化簡后,將a7的值代入即可求出值.
解答:解:根據(jù)等差數(shù)列的性質可知a5+a9=2a7,
根據(jù)a5+a9-a7=10,得到a7=10,
而S13=a1+a2+…+a13=(a1+a13)+(a2+a12)+(a3+a11)+(a4+a10)+(a5+a9)+(a6+a8)+a7=13a7=130
故選D
點評:考查學生靈活運用等差數(shù)列性質的能力.本題的突破點是項數(shù)相加為14的結合在一起.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案