已知函數(shù)數(shù)學(xué)公式
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若已知數(shù)學(xué)公式,求數(shù)學(xué)公式的值.

解:(I)f(x)=sinx-=sin(x
∴T=2π
(II)∵cos(β-α)=cosαcosβ+sinαsinβ=
cos(β+α)=cosαcosβ-sinαsinβ=-
∴cosαcosβ=0
∵0<α<β≤
∴cosβ=0
∴β=
=sinβ=
分析:(I)利用二倍角公式將f(x)化簡(jiǎn)為一個(gè)角的一個(gè)三角函數(shù)的形式,然后直接求出周期;
(II)先根據(jù)兩角和與差公式展開cos(β-α)和cos(β+α),進(jìn)而求出cosαcosβ=0,再由角的范圍得出β的值,即可求得結(jié)果.
點(diǎn)評(píng):本題考查了二倍角公式、兩角和與差公式等知識(shí),關(guān)鍵是基本的三角函數(shù)的性質(zhì)的掌握熟練程度,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側(cè)的第一個(gè)最大值、最小值點(diǎn)分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數(shù)y=f(x)的解析式及x0;
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
3
(縱坐標(biāo)不變),然后再將所得圖象沿x軸負(fù)方向平移
π
3
個(gè)單位,最后將y=f(x)圖象上所有點(diǎn)的縱坐標(biāo)縮短到原來的
1
2
(橫坐標(biāo)不變)得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式并給出y=|g(x)|的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時(shí)取得最大值4.
(1)求函數(shù)f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+
3
sin2x
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)當(dāng) x∈[0,
π
4
]時(shí),求函數(shù)f(x)的值域;
(3)若將該函數(shù)圖象向左平移
π
4
個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年湖北省仙桃一中高三(上)第二次段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)在給出的直角坐標(biāo)系中,用描點(diǎn)法畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案