【題目】如圖,四面體OABC的三條棱OAOB,OC兩兩垂直,OA=OB=2,OC=3,D為四面體OABC外一點.給出下列命題.

不存在點D,使四面體ABCD有三個面是直角三角形

不存在點D,使四面體ABCD是正三棱錐

存在點D,使CDAB垂直并且相等

存在無數(shù)個點D,使點O在四面體ABCD的外接球面上

其中真命題的序號是

【答案】③④

【解析】

試題四面體OABC的三條棱OAOB,OC兩兩垂直,OA=OB=2,OC=3,

∴AC=BC=,AB=,當四棱錐CABD與四面體OABC一樣時,即取CD=3,AD=BD=2

此時點D,使四面體ABCD有三個面是直角三角形,故不正確,使AB=AD=BD,此時存在點D,使四面體ABCD是正三棱錐,故不正確;取CD=AB,AD=BD,此時CD垂直面ABD,即存在點D,使CDAB垂直并且相等,故正確;先找到四面體OABC的內(nèi)接球的球心P,使半徑為r,只需PD=r即可

存在無數(shù)個點D,使點O在四面體ABCD的外接球面上,故正確

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,直線與以原點為圓心、橢圓的短半軸長為半徑的圓相切.

1)求橢圓的方程;

2)矩形軸右側(cè),且頂點、在直線上,頂點、在橢圓上,若矩形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為常數(shù)).

(1)若函數(shù)與函數(shù)處有相同的切線,求實數(shù)的值;

2)若,且,證明:

3)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:

,

其中是有序數(shù)對,集合中的元素個數(shù)分別為

若對于任意的,總有,則稱集合具有性質(zhì)

)檢驗集合是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合

)對任何具有性質(zhì)的集合,證明

)判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域為的函數(shù)滿足,,若,且,則().

A. B.

C. D. 的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在點處取得極小值-5,其導函數(shù)的圖象經(jīng)過點(0,0),(2,0).

(1)求的值;

(2)求及函數(shù)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點,并且直線平分圓.

1)求圓的方程;

2)若過點,且斜率為的直線與圓有兩個不同的交點、.

i)求實數(shù)的取值范圍;

ii)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)若對任意,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案