在平面直角坐標(biāo)系中,已知矩形ABCD的長(zhǎng)為2,寬為1,AB、AD邊分別在x軸、y軸的正半軸上,A點(diǎn)與坐標(biāo)原點(diǎn)重合如右圖所示.將矩形折疊,使A點(diǎn)落在線段DC上.
若折痕所在直線的斜率為k,試寫出折痕所在直線的方程.
①當(dāng)k=0時(shí),此時(shí)A點(diǎn)與D點(diǎn)重合,
折痕所在的直線方程y=,
②當(dāng)k≠0時(shí),將矩形折疊后A點(diǎn)落在線段CD上的點(diǎn)為
G(a,1),所以A與G關(guān)于折痕所在的直線對(duì)稱,
有kOG·k=-1,k=-1⇒a=-k,
故G點(diǎn)坐標(biāo)為G(-k,1),從而折痕所在的直線與OG的交點(diǎn)坐標(biāo)(線段OG的中點(diǎn))為M,
折痕所在的直線方程y-=k,
即y=kx++
由①②得折痕所在的直線方程為:
k=0時(shí),y=;k≠0時(shí)y=kx++.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩直線。求分別滿足下列條件的的值.
(1)直線過點(diǎn),并且直線與垂直;
(2)直線與直線平行,并且直線在軸上的截距為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(1-4班做)(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
(5-7班做)(Ⅱ)設(shè)P(-4,1)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l的傾斜角為135°,且經(jīng)過點(diǎn)P(1,1).
(Ⅰ)求直線l的方程;
(Ⅱ)求點(diǎn)A(3,4)關(guān)于直線l的對(duì)稱點(diǎn)A¢的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平行四邊形的邊和所在的直線方程分別是、,對(duì)角線的交點(diǎn)是.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求直線和直線之間距離;
(Ⅲ) 平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.(本小題滿分14分)
如圖,在邊長(zhǎng)為10的正三角形紙片ABC的邊AB,AC上分別取D,E兩點(diǎn),使沿線段DE折疊三角形紙片后,頂點(diǎn)A正好落在邊BC上(設(shè)為P),在這種情況下,求AD的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線上一點(diǎn)M(1,1),動(dòng)弦ME、MF分別交軸與A、B兩點(diǎn),且MA=MB。證明:直線EF的斜率為定值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com