如圖,△ABC的∠BAC的外角平分線交△ABC的外接圓于點(diǎn)D.

求證:AB+AC<2BD.

答案:
解析:

  證明:在BA延長(zhǎng)線上取點(diǎn)E,使得AE=AC,連結(jié)DC、DE,

  因?yàn)锳E=AC,∠1=∠2,AD=AD,

  所以△ADE≌△ADC.

  所以DE=DC.

  在△BED中,BE<BD+DE=BD+DC,

  即AB+AC<BD+DC,

  因?yàn)锳、B、C、D是圓內(nèi)接四邊形.

  所以∠1=∠BCD.

  又因?yàn)椤?=∠DBC,∠1=∠2.

  所以∠BCD=∠DBC.

  所以BD=DC.

  因此AB+AC<2BD成立.

  分析:因?yàn)楸容^的是兩條線段的和與另一條線段的大小,所以應(yīng)將兩條線段的和轉(zhuǎn)化為一條線段,故可延長(zhǎng)BA到E,使得AE=AC,然后比較BE與2BD的大小關(guān)系.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC的內(nèi)切圓與三邊AB、BC、CA的切點(diǎn)分別為D、E、F,已知B(-
2
,0)
,C(
2
,0)
,內(nèi)切圓圓心I(1,t).設(shè)A點(diǎn)的軌跡為L(zhǎng)
(1)求L的方程;
(2)過(guò)點(diǎn)C作直線m交曲線L于不同的兩點(diǎn)M、N,問(wèn)在x軸上是否存在一個(gè)異于點(diǎn)C的定點(diǎn)Q.使
QM
QC
|
QM
|
=
QN
QC
|
QN
|
對(duì)任意的直線m都成立?若存在,求出Q的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC的頂點(diǎn)A、B、C所對(duì)的邊分別為a、b、c,A為圓心,直徑PQ=2r,問(wèn):當(dāng)P、Q取什么位置時(shí),
BP
CQ
有最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC
交于點(diǎn)D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點(diǎn).A,B,C,求線段AB的長(zhǎng).
D.選修4-5:不等式選講
對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南京模擬)A.選修4-1幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
求證:ED2=EB•EC.
B.矩陣與變換
已知矩陣A=
2-1
-43
,
4-1
-31
,求滿足AX=B的二階矩陣X.
C.選修4-4 參數(shù)方程與極坐標(biāo)
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π
3
),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
D.選修4-5 不等式證明選講設(shè)a,b,c為正實(shí)數(shù),求證:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選作題:考生任選一題作答,如果多做,則按所做的第一題計(jì)分.
A 如圖,△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)E.
(I)證明:△ABE∽△ADC
(II)若△ABC的面積S=
1
2
AD•AE
,求∠BAC的大。
B 已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.                
C 已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案