">

【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.


優(yōu)秀

非優(yōu)秀

合計

甲班

10



乙班


30


合計



110

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為成績與班級有關系

3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從211進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828
span>

【答案】1


優(yōu)秀

非優(yōu)秀

合計

甲班

10

50

60

乙班

20

30

50

合計

30

80

110

2)按99.9%的可靠性要求,不能認為成績與班級有關系

3

【解析】

試題

思路此類問題(1)(2)直接套用公式,經過計算卡方,與數(shù)表對比,作出結論。(3)是典型的古典概型概率的計算問題,確定兩個事件數(shù),確定其比值。

解:(14


優(yōu)秀

非優(yōu)秀

合計

甲班

10

50

60

乙班

20

30

50

合計

30

80

110

2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2= ≈7.48710.828.因此按99.9%

可靠性要求,不能認為成績與班級有關系” 8

3)設抽到910為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、、(6,6)共36個.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(46)(6,4)共7個.所以P(A)=,即抽到9號或10號的概率為12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,為橢圓短軸的一個端點,、為橢圓的左、右焦點,線段的延長線與橢圓相交于點,且.

1)求橢圓的方程;

2)如圖,點為橢圓上一動點(非長軸端點),的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為, ,若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點 .

(1)求橢圓的方程;

(2)過點軸的垂線,交橢圓,求證: , 三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的個數(shù)是(

1)平面與平面都相交,則這三個平面有2條或3條交線

2)如果平面外有兩點到平面的距離相等,則直線

3)直線不平行于平面,則不平行于內任何一條直線

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意函數(shù),可按如圖所示,構造一個數(shù)列發(fā)生器,其工作原理如下:

①輸入數(shù)據(jù),經數(shù)列發(fā)生器輸出

②若,則數(shù)列發(fā)生器結束工作;若,將反饋回輸入端,再輸出,并依此規(guī)律進行下去.

現(xiàn)定義.

1)若輸入,則由數(shù)列發(fā)生器產生數(shù)列,寫出數(shù)列的所有項;

2)若要使數(shù)列發(fā)生器產生一個無窮的常數(shù)列,試求輸入的初始數(shù)據(jù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】最近上映的電影《后來的我們》引起了一陣熱潮,為了了解大眾對這部電影的評價,隨機訪問了50名觀影者,根據(jù)這50人對該電影的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,.

1)求頻率分布直方圖中的值,并估計觀影者對該電影評分不低于80的概率;

2)由頻率分布直方圖估計評分的中位數(shù)(保留兩位小數(shù))與平均數(shù);

3)從評分在的觀影者中隨機抽取2人,求至少有一人評分在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經過,兩點,且在兩坐標軸上的四個截距之和是.

1)求圓的方程;

2)若為圓內一點,求過點被圓截得的弦長最短時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的二項展開式的各二項式系數(shù)的和與各項系數(shù)的和均為

1)求展開式中有理項的個數(shù);

2)求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求f(x)的最小正周期和單調增區(qū)間;

(Ⅱ)當x[ ,]時,求函數(shù)f(x)的最小值和最大值.

查看答案和解析>>

同步練習冊答案