曲線y=1-x2與x軸圍成圖形的面積是   
【答案】分析:先求出曲線與x軸的交點(diǎn),設(shè)圍成的平面圖形面積為A,利用定積分求出A即可.
解答:解:y=1-x2令y=0得x=±1
設(shè)曲線y=1-x2與x軸圍成圖形的面積為A
則A=∫-11(1-x2)dx=(x-)|-11=
故答案為:
點(diǎn)評(píng):考查學(xué)生利用定積分求平面圖形面積的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=1-x2與x軸圍成圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=1-x2與x軸所圍區(qū)域?yàn)锳,在平面區(qū)域Ω={(x,y)|-1≤x≤1,0≤y≤2}內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P落在區(qū)域A內(nèi)的概率為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線y=1-x2與x軸圍成圖形的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省江門市普通高中高三調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

曲線y=1-x2與x軸圍成圖形的面積是   

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹