橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)M是橢圓C上一點(diǎn),的周長為16,設(shè)線段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動時,判斷直線與圓O的位置關(guān)系.
(1),
(2)直線l與圓O相交.

試題分析:解:(1)設(shè)橢圓C的半焦距為c,則,即①          1分
   ②            3分
聯(lián)立①②,解得,所以.
所以橢圓C的方程為.                     5分
而橢圓C上點(diǎn)與橢圓中心O的距離為
,等號在時成立   7分,
,則的最小值為,從而,則圓O的方程為.                              9分
(2)因?yàn)辄c(diǎn)在橢圓C上運(yùn)動,所以.即.
圓心O到直線的距離.     12分
當(dāng),,則直線l與圓O相交.               14分
點(diǎn)評:主要是考查了橢圓的方程以及直線與圓的位置關(guān)系的運(yùn)用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足,. 當(dāng)時,試證明直線過定點(diǎn).過定點(diǎn)(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左焦點(diǎn)為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線是曲線的一條切線,
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時,存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過直線y=﹣1上的動點(diǎn)A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知滿足,記目標(biāo)函數(shù)的最大值為7,最小值為1,則 (     )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是 (    )
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線上一定點(diǎn)B(-1,0)和兩個動點(diǎn),當(dāng)時,點(diǎn)的橫坐標(biāo)的取值范圍是
A.B.
C.D.(-∞,-3]∪

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在坐標(biāo)原點(diǎn)焦點(diǎn)在軸上的橢圓C,其長軸長等于4,離心率為
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)(0,1), 問是否存在直線與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案