【題目】已知函數(shù),若關(guān)于的方程恰有三個(gè)不相等的實(shí)數(shù)解,則的取值范圍是  

A. B.

C. D.

【答案】B

【解析】

設(shè),則的圖象沿著上下平移得到,分析函數(shù)的圖象,利用圖象關(guān)系確定兩個(gè)函數(shù)滿足的條件進(jìn)行求解即可.

設(shè),

的圖象沿著上下平移得到,

當(dāng)x=1時(shí),11

所以直線x=1與函數(shù)h(x)的圖像的交點(diǎn)坐標(biāo)為(1,m,

當(dāng)x=1時(shí),g(1)=0,

當(dāng)x=2時(shí),2,所以直線x=2與函數(shù)g(x)的圖像的交點(diǎn)為(2,-2),

當(dāng)x=2時(shí),2,所以直線x=2與函數(shù)h(x)的圖像的交點(diǎn)為(2ln2+m,

要使方程恰有三個(gè)不相等的實(shí)數(shù)解,

則等價(jià)為的圖象有三個(gè)不同的交點(diǎn),

則滿足,

,

即實(shí)數(shù)的取值范圍是,,

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形中, 的中點(diǎn),將沿折起,使得平面平面.

(1)求證:

(2)設(shè),當(dāng)為何值時(shí),二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】借助計(jì)算器填寫下表:

0

1

10

20

30

50

70

100

150

200

250

300

觀察表中的變化并歸納各函數(shù)遞增的規(guī)律:

1)一次函數(shù)與冪函數(shù)之間比較得出的規(guī)律;

2)冪函數(shù)與指數(shù)函數(shù)之間比較得出的規(guī)律;

3)指數(shù)函數(shù)之間比較得出的規(guī)律.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地居民用水采用階梯水價(jià),其標(biāo)準(zhǔn)為:每戶每月用水量不超過15噸的部分,每噸3元;超過15噸但不超過25噸的部分,每噸4.5元;超過25噸的部分,每噸6.

(1)求某戶居民每月需交水費(fèi)(元)關(guān)于用水量(噸)的函數(shù)關(guān)系式;

(2)若戶居民某月交水費(fèi)67.5元,求戶居民該月的用水量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識力,組織了一場類似《最強(qiáng)大腦》的 PK 賽,兩隊(duì)各由 4 名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當(dāng)時(shí),解不等式

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓ab0)經(jīng)過點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知A0,b),Ba,0),點(diǎn)P是橢圓C上位于第三象限的動(dòng)點(diǎn),直線AP、BP分別將x軸、y軸于點(diǎn)MN,求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測:

車間

數(shù)量

50

150

100

(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件產(chǎn)品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱中心的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個(gè)單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案