【題目】設函數.
(1)若,解不等式
;
(2)若當時,關于
的不等式
恒成立,求
的取值范圍;
(3)設,若存在
使不等式
成立,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為2,P是BC的中點,點Q是棱
上的動點.
(1)點Q在何位置時,直線,DC,AP交于一點,并說明理由;
(2)求三棱錐的體積;
(3)棱上是否存在動點Q,使得
與平面
所成角的正弦值為
,若存在指出點Q在棱
上的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系 中,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求直線和曲線
的普通方程;
(2)已知點,且直線
和曲線
交于
兩點,求
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,人們的支付方式發(fā)生了巨大轉變,使用移動支付購買商品已成為一部分人的消費習慣.某企業(yè)為了解該企業(yè)員工、
兩種移動支付方式的使用情況,從全體員工中隨機抽取了100人,統(tǒng)計了他們在某個月的消費支出情況.發(fā)現(xiàn)樣本中
,
兩種支付方式都沒有使用過的有5人;使用了
、
兩種方式支付的員工,支付金額和相應人數分布如下:
支付金額(元) 支付方式 | 大于2000 | ||
使用 | 18人 | 29人 | 23人 |
使用 | 10人 | 24人 | 21人 |
依據以上數據估算:若從該公司隨機抽取1名員工,則該員工在該月、
兩種支付方式都使用過的概率為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線(α為參數)經過伸縮變換
得到曲線C2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求C2的普通方程;
(2)設曲線C3的極坐標方程為,且曲線C3與曲線C2相交于M,N兩點,點P(1,0),求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,射線
的方程為
,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的方程為
.一只小蟲從點
沿射線
向上以
單位/min的速度爬行
(1)以小蟲爬行時間為參數,寫出射線
的參數方程;
(2)求小蟲在曲線內部逗留的時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區(qū)名居民參加
年國慶活動,他們的年齡在
歲至
歲之間,將年齡按
、
、
、
、
分組,得到的頻率分布直方圖如圖所示.
(1)求的值,并求該社區(qū)參加
年國慶活動的居民的平均年齡(每個分組取中間值作代表);
(2)現(xiàn)從年齡在、
的人員中按分層抽樣的方法抽取
人,再從這
人中隨機抽取
人進行座談,用
表示參與座談的居民的年齡在
的人數,求
的分布列和數學期望;
(3)若用樣本的頻率代替概率,用隨機抽樣的方法從該地歲至
歲之間的市民中抽取
名進行調查,其中有
名市民的年齡在
的概率為
,當
最大時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據閱兵領導小組辦公室介紹,2019年國慶70周年閱兵有59個方(梯)隊和聯(lián)合軍樂團,總規(guī)模約1.5萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標準.要求最為嚴格的三軍儀仗隊,其隊員的身高一般都在184cm至190cm之間.經過隨機調查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據直方圖得到P(C)的估計值為0.5.
(1)求直方圖中a,b的值;
(2)估計這個陣營女子身高的平均值 (同一組中的數據用該組區(qū)間的中點值為代表)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com