【題目】已知動圓與圓,都相內切,即圓心的軌跡為曲線;設為曲線上的一個不在軸上的動點,為坐標原點,過點的平行線交曲線兩個不同的點

(1)求曲線的方程;

(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù);若不能,請說明理由.

【答案】(1);(2)能,.

【解析】

試題分析:(1)動圓與圓都相內切,可得圓心的軌跡為以為焦點的橢圓,其中從而可求得曲線的方程;(2),,直線,則直線,與橢圓方程聯(lián)立利用韋達定理、弦長公式及兩點間距離公式可求得.

試題解析:(1)設圓心的坐標為,半徑為,

圓心的軌跡為以、為焦點的橢圓,其中,

,,

故圓心的軌跡

(2)設,,直線,則直線

可得

可得,

,

,

的比值為一個常數(shù),這個常數(shù)為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)若,過點的直線交曲線兩點,且,求直線的方程;

(2)若曲線表示圓時,已知圓與圓交于兩點,若弦所在的直線方程為, 為圓的直徑,且圓過原點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1若函數(shù)有且只有一個極值點,求實數(shù)的取值范圍;

2對于函數(shù),,若對于區(qū)間上的任意一個,都有,則稱函數(shù)是函數(shù),在區(qū)間上的一個分界函數(shù).已知,,問是否存在實數(shù),使得函數(shù)是函數(shù),在區(qū)間上的一個分界函數(shù)?若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4個男生,3個女生站成一排.(必須寫出算式再算出結果才得分)

(Ⅰ)3個女生必須排在一起,有多少種不同的排法?

(Ⅱ)任何兩個女生彼此不相鄰,有多少種不同的排法?

(Ⅲ)甲乙二人之間恰好有三個人,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中)的圖象的兩條相鄰對稱軸之間的距離為,且圖象上一個最低點為.

(1)求函數(shù)的解析式;

(2)當時,求函數(shù)的值域;

(3)若方程上有兩個不相等的實數(shù)根,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長為的線段的兩個端點分別在軸和軸上滑動.

(1)求線段的中點的軌跡的方程;

(2)當時,曲線軸交于兩點,點在線段上,過軸的垂線交曲線于不同的兩點,點在線段上,滿足的斜率之積為-2,試求的面積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,且上單調遞增,求實數(shù)的取值范圍

2)是否存在實數(shù),使得函數(shù)上的最小值為?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的方程為,其中.

(1)求證:直線恒過定點;

(2)當變化時,求點到直線的距離的最大值;

(3)若直線分別與軸、軸的負半軸交于兩點,求面積的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線

(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數(shù)方程:

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

同步練習冊答案