【題目】用反證法證明命題:“已知a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是(
A.方程x2+ax+b=0沒有實(shí)根
B.方程x2+ax+b=0至多有一個(gè)實(shí)根
C.方程x2+ax+b=0至多有兩個(gè)實(shí)根
D.方程x2+ax+b=0恰好有兩個(gè)實(shí)根

【答案】A
【解析】解:反證法證明問題時(shí),反設(shè)實(shí)際是命題的否定,

∴用反證法證明命題“設(shè)a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是:方程x2+ax+b=0沒有實(shí)根.

故選:A.

直接利用命題的否定寫出假設(shè)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an},{bn}是公差分別為d1 , d2的等差數(shù)列,且An=an+bn , Bn=anbn . 若A1=1,A2=3,則An=;若{Bn}為等差數(shù)列,則d1d2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于空間兩條不同直線m,n,兩個(gè)不同平面α,β,有下列四個(gè)命題:①若m∥α且n∥α,則m∥n;②若m⊥β且m⊥n,則n∥β;③若m⊥α且m∥β,則α⊥β;④若nα且m不垂直于α,則m不垂直于n.其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】令a=60.7 , b=0.76 , c=log0.76,則三個(gè)數(shù)a、b、c的大小順序是(
A.b<c<a
B.b<a<c
C.c<a<b
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x2﹣x,則f(1)=(
A.﹣1
B.﹣3
C.1
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x||x|≤2},B={x|x2﹣x﹣2<0},則A∩RB=(
A.R
B.{x|﹣2≤x≤﹣1}
C.{x|﹣2≤x≤﹣1或x>2}
D.{x|﹣2≤x≤﹣1或x=2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題“若a2+b2=0(a,b∈R),則a,b全為0”,其反設(shè)正確的是(
A.a,b至少有一個(gè)為0
B.a,b至少有一個(gè)不為0
C.a,b全部為0
D.a,b中只有一個(gè)為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知l,m是兩條不同的直線,α,β是兩個(gè)不同的平面.下列命題: ①若lα,mα,l∥β,m∥β,則α∥β;
②若lα,l∥β,α∩β=m,則l∥m;
③若α∥β,l∥α,則l∥β;
④若l⊥α,m∥l,α∥β,則m⊥β.
其中真命題是(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩對(duì)夫婦各帶一個(gè)小孩到動(dòng)物園游玩,購票后排成一隊(duì)依次入園.為安全起見,首尾一定要排兩位爸爸,另外兩個(gè)小孩要排在一起,則這六人的入園順序排法種數(shù)為 . (用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案