【題目】在平面直角坐標(biāo)系中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線L,曲線C的參數(shù)方程為為參數(shù))

求直線L和曲線C的普通方程;

在曲線C上求一點Q,使得Q到直線L的距離最小,并求出這個最小值

【答案】(1)直線L的普通方程為:;曲線C的普通方程為(x-52+y2=1;(2)點Q坐標(biāo)為,距離最小值為2.

【解析】

1)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化得到的普通方程,根據(jù)圓的參數(shù)方程相關(guān)知識得到的普通方程;(2)設(shè)出點的參數(shù)形式,利用點到直線的距離公式以及三角函數(shù)有界性計算點到直線距離的最小值.

解:(1)∵直線Lρcosθ-ρsinθ+1=0,

∴直線L的普通方程為:

∵曲線C的參數(shù)方程為α為參數(shù)),

∴曲線C的普通方程為(x-52+y2=1

2)設(shè)Q5+cosα,sinα),Q到直線L的距離:

當(dāng)時,即,dmin=2

此時點Q坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A.命題“若,則”的逆否命題為:“若,則

B.”是“”的充分而不必要條件

C.為假命題,則、均為假命題

D.命題“存在,使得”,則非“任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;

2)當(dāng)時,求函數(shù)的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的焦點是、是曲線上不同兩點,且存在實數(shù)使得,曲線在點處的兩條切線相交于點

1)求點的軌跡方程;

2)點軸上,以為直徑的圓與的另一交點恰好是的中點,當(dāng)時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生參加體育活動的情況,學(xué)校對學(xué)生進行隨機抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少?”,共有4個選項:A,1.5小時以上,B,1-1.5小時,C,0.5-1小時,D,0.5小時以下.圖(1),(2)是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:

(1)本次一共調(diào)查了多少名學(xué)生.

(2)在圖(1)中將對應(yīng)的部分補充完整.

(3)若該校有3000名學(xué)生,你估計全校有多少名學(xué)生平均每天參加體育活動的時間在0.5小時以下?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,離心率等于,該橢圓的一個長軸端點恰好是拋物線的焦點.

1)求橢圓的方程;

2)已知直線與橢圓的兩個交點記為、,其中點在第一象限,點、是橢圓上位于直線兩側(cè)的動點.當(dāng)、運動時,滿足,試問直線的斜率是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),若,且上恒成立,求的取值范圍;

3)設(shè)函數(shù),若,且上存在零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校300名高三學(xué)生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘).

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

34

51

59

66

65

25

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為鍛煉達標(biāo)”.

1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達標(biāo)

鍛煉達標(biāo)

合計

40

160

合計

2)通過計算判斷,是否能在犯錯誤的概率不超過0.05的前提下認(rèn)為鍛煉達標(biāo)與性別有關(guān)?

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊答案