設{}是首項為50,公差為2的等差數(shù)列,{}是首項為10,公差為4的等差數(shù)列,以為兩邊的矩形內(nèi)的最大圓的面積為,如果k≤21,求得=________

[  ]

A.π
B.π
C.π
D.π
答案:B
解析:

解析:考察等差數(shù)列。


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設{
bnan
}
是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是首項為50,公差為2的等差數(shù)列;{bn}是首項為10,公差為4的等差數(shù)列,以ak、bk為相鄰兩邊的矩形內(nèi)最大圓面積記為Sk,則Sk等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是首項為50,公差為2的等差數(shù)列;{bn}是首項為10,公差為4的等差數(shù)列,以ak、bk為相鄰兩邊的矩形內(nèi)最大圓面積記為Sk,若k≤21,那么Sk等于
(2k+3)2π
(2k+3)2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•鹽城一模)如果有窮數(shù)列a1,a2,a3,…,an(n為正整數(shù))滿足條件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列
C
0
m
, 
C
1
m
, …, 
C
m
m
就是“對稱數(shù)列”.
(1)設{bn}是項數(shù)為7的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項;
(2)設{cn}是項數(shù)為2k-1(正整數(shù)k>1)的“對稱數(shù)列”,其中ck,ck+1,…,c2k-1是首項為50,公差為-4的等差數(shù)列.記{cn}各項的和為S2k-1.當k為何值時,S2k-1取得最大值?并求出S2k-1的最大值;
(3)對于確定的正整數(shù)m>1,寫出所有項數(shù)不超過2m的“對稱數(shù)列”,使得1,2,22,…,2m-1依次是該數(shù)列中連續(xù)的項;當m>1500時,求其中一個“對稱數(shù)列”前2008項的和S2008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•樂山一模)如果有窮數(shù)列a1,a2,a3,…,an(n∈N*)滿足a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…n),則稱其為“對稱數(shù)列”.
(1)設{bn}是項數(shù)為7的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11,則數(shù)列{bn}的各項分別是
2,5,8,11,8,5,2
2,5,8,11,8,5,2

(2)設{Cn}是項數(shù)為2k-1(k∈N*,k>1)的“對稱數(shù)列”,其中Ck,Ck+1,…,C2k-1是首項為50,公差為-4的等差數(shù)列,記{Cn}各項和和為S2k-1,則S2k-1的最大值為
626
626

查看答案和解析>>

同步練習冊答案