【題目】為大力提倡厲行節(jié)約,反對浪費(fèi),衡陽市通過隨機(jī)詢問100名性別不同的居民是否做到光盤行動,得到如右列聯(lián)表及附表:經(jīng)計(jì)算:參照附表,得到的正確結(jié)論是(


做不到光盤行動

做到光盤行動


45

10


30

15

k

A.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該市民能否做到光盤行動與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該市民能否做到光盤行動與性別無關(guān)

C.90%以上的把握認(rèn)為該市民能否做到光盤行動與性別有關(guān)

D.90%以上的把握認(rèn)為該市民能否做到光盤行動與性別無關(guān)

【答案】C

【解析】

試題因?yàn)?/span>

因?yàn)?/span>2.7063.0303.841所以有90%以上的把握認(rèn)為該市居民能否做到光盤與性別有關(guān).故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的焦距為,斜率為的直線與橢圓交于兩點(diǎn),若線段的中點(diǎn)為,且直線的斜率為.

(1)求橢圓的方程;

(2)若過左焦點(diǎn)斜率為的直線與橢圓交于點(diǎn) 為橢圓上一點(diǎn),且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;

2)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把編號為1,2,3,45的五個(gè)大小、形狀相同的小球,隨機(jī)放入編號為1,2,3,45的五個(gè)盒子里.每個(gè)盒子里放入一個(gè)小球.

1)求恰有兩個(gè)球的編號與盒子的編號相同的概率;

2)設(shè)恰有個(gè)小球的編號與盒子編號相同,求隨機(jī)變量的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn).

(1)求過點(diǎn)的切線方程(用表示);

(2)過直線上一點(diǎn)作拋物線的兩條切線,切點(diǎn)為,求為拋物線的頂點(diǎn))面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)當(dāng)時(shí),判斷曲線與曲線的位置關(guān)系;

(2)當(dāng)曲線上有且只有一點(diǎn)到曲線的距離等于時(shí),求曲線上到曲線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形中, , , 分別為, 的中點(diǎn),以為圓心, 為半徑的圓交,點(diǎn)在弧上運(yùn)動(如圖).若,其中, ,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第七屆世界軍人運(yùn)動會于20191018日至27日在中國武漢舉行,中國隊(duì)以1336442銅位居金牌榜和獎(jiǎng)牌榜的首位.運(yùn)動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個(gè)運(yùn)動場地提供服務(wù),要求每個(gè)人都要被派出去提供服務(wù),且每個(gè)場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案