【題目】某學(xué)校近幾年來(lái)通過(guò)“書香校園”主題系列活動(dòng),倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計(jì)圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是( )
A.從2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長(zhǎng)
B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7本
C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3本
D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2倍
【答案】D
【解析】
對(duì)于,根據(jù)統(tǒng)計(jì)圖得到四個(gè)數(shù)據(jù),觀察變化趨勢(shì)可得答案;對(duì)于,根據(jù)統(tǒng)計(jì)圖得到六個(gè)數(shù)據(jù),按照從小到大的順序排成一列,根據(jù)中位數(shù)的定義,計(jì)算可得答案;對(duì)于,使用六個(gè)數(shù)據(jù)中的最大值減去最小值可得答案;對(duì)于,通過(guò)計(jì)算比較可得答案.
對(duì)于,根據(jù)統(tǒng)計(jì)圖分析可知,從2013年到2016年,該校紙質(zhì)書人均閱讀量分別是:15.5,38.5,43.3,58.4是逐年增長(zhǎng)的,故是合理的;
對(duì)于,2013年至2018年,該校紙質(zhì)書人均閱讀量按從小到大的順序排列為:15.5,38.5,43.3,50.1,58.4,60.8,其中位數(shù)為本,故是合理的;
對(duì)于,因?yàn)樽畲箝喿x量為本,最小閱讀量為本,所以極差為本,故是合理的;
對(duì)于,2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和為本,前三年紙質(zhì)書人均閱讀量總和為本,, 故是不合理的.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】時(shí)至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國(guó)面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對(duì)的一項(xiàng)課題.某市號(hào)召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來(lái)天天開車上班的王先生積極響應(yīng)政府號(hào)召,準(zhǔn)備每天從騎自行車和開小車兩種出行方式中隨機(jī)選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用“一次性拋擲6枚均勻硬幣”的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.
(1)求王先生前三天騎自行車上班的天數(shù)X的分布列;
(2)由條件概率我們可以得到概率論中一個(gè)很重要公式——全概率公式.其特殊情況如下:如果事件相互對(duì)立并且,則對(duì)任一事件B有.設(shè)表示事件“第n天王先生上班選擇的是騎自行車出行方式”的概率.
①用表示;
②王先生的這種選擇隨機(jī)選擇出行方式有沒(méi)有積極響應(yīng)該市政府的號(hào)召,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】向量集合,對(duì)于任意,以及任意,都有,則稱為“類集”,現(xiàn)有四個(gè)命題:
①若為“類集”,則集合也是“類集”;
②若,都是“類集”,則集合也是“類集”;
③若都是“類集”,則也是“類集”;
④若都是“類集”,且交集非空,則也是“類集”.
其中正確的命題有________(填所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程;
(2)已知P是曲線C上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線交直線于點(diǎn)A,且直線與直線l的夾角為45°,若的最大值為6,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
(ii)若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡(jiǎn)單題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了各級(jí)城市的大街小巷,為了解我市的市民對(duì)共享單車的滿意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了50人進(jìn)行分析.若得分低于60分,說(shuō)明不滿意,若得分不低于60分,說(shuō)明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1.
(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);
滿意 | 不滿意 | 合計(jì) | |
40歲以下 | |||
40歲以上 | |||
合計(jì) |
(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再?gòu)倪@7人中隨機(jī)選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.
參考格式:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的棱長(zhǎng)為2,平面過(guò)正方體的一個(gè)頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),是什么曲線?
(2)當(dāng)時(shí),求與的公共點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)已知,曲線與的交點(diǎn)A, B滿足(A為第一象限的點(diǎn)),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com