【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)若時,求的交點坐標;

(2)若上的點到距離的最大值為,求.

【答案】(1),;(2).

【解析】試題分析:(1)根據(jù)參數(shù)方程、極坐標方程與直角坐標方程的互化,求得曲線的直角坐標方程,聯(lián)立方程組,即可求解交點的坐標;

(2)由曲線的參數(shù)方程,設上的點,求得點到的距離,根據(jù)三角函數(shù)的圖象與性質(zhì),得出的最大值,從而的值.

試題解析:

(1)曲線的普通方程為

時,直線的普通方程為,

,解得,或,

從而的交點坐標為.

(2)直線的普通方程為,

的參數(shù)方程為為參數(shù)),

上的點的距離為

.

時,的最大值為

由題設得,所以,

時,的最大值為,

由題設得,所以,

綜上,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面,.

I)求證:平面;

II)點在線段上運動,設平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,是邊長等于2的等邊三角形,四邊形是菱形,,是棱上的點,.,分別是,的中點.

(1)求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面PAC⊥平面ABC,點E、F、O分別為線段PA、PB、AC的中點,點G是線段CO的中點,ABBCAC4,PAPC2.求證:

1PA⊥平面EBO

2FG∥平面EBO

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,均與底面垂直,且為直角梯形,,,,分別為線段的中點,為線段上任意一點.

(1)證明:平面.

(2)若,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學生課外閱讀情況,隨機抽取了100名學生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。

(1)求的值,并根據(jù)頻率分布直方圖估計該校學生一周課外閱讀時間的平均值;

(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.

(1)設P是上的一點,且AP⊥BE,求∠CBP的大小;

(2)當AB=3,AD=2時,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】氣象意義上,從春季進入夏季的標志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、為拋物線上的兩點,的中點的縱坐標為4,直線的斜率為.

(1)求拋物線的方程;

(2)已知點、為拋物線(除原點外)上的不同兩點,直線的斜率分別為,,且滿足,記拋物線、處的切線交于點,若點、的中點的縱坐標為8,求點的坐標.

查看答案和解析>>

同步練習冊答案