【題目】如圖,點(diǎn)是雙曲線上的動(dòng)點(diǎn),是雙曲線的焦點(diǎn),M是的平分線上一點(diǎn),且,某同學(xué)用以下方法研究:延長(zhǎng)交于點(diǎn)N,可知為等腰三角形,且M為的中點(diǎn),得,類似地:點(diǎn)是橢圓上的動(dòng)點(diǎn),橢圓的焦點(diǎn),M是的平分線上一點(diǎn),且則的取值范圍是______
【答案】
【解析】
利用M是∠F1PF2平分線上的一點(diǎn),且F2M⊥MP,判斷OM是三角形F1F2N的中位線,把OM用PF1,PF2表示,再利用橢圓的焦半徑公式,轉(zhuǎn)化為用橢圓上點(diǎn)的橫坐標(biāo)表示,借助橢圓的范圍即可求出OM的范圍.
如圖,延長(zhǎng)F2M,交PF1與N點(diǎn),
∵PM是∠F1PF2平分線,且0,
且F2M⊥MP,
∴|PN|=|PF2|,M為F2N的中點(diǎn),
連接OM,
∵O為F1F2中點(diǎn),M為F2N中點(diǎn),
∴|OM||F1N|||PF1|﹣|PN||||PF1|﹣|PF2||
∵在橢圓1(a>b>0)中,
設(shè)P點(diǎn)坐標(biāo)為(x0,y0)
則|PF1|=a+ex0,|PF2|=a﹣ex0,
∴||PF1|﹣|PF2||=|a+ex0﹣a+ex0|=|2ex0|=2e|x0||x0|,
即有|OM||x0|,
∵P點(diǎn)在橢圓1(a>b>0)上,
∴|x0|∈(0,a],
又∵當(dāng)|x0|=a時(shí),F2M⊥MP不成立,∴|x0|∈(0,a),
∴|OM|∈(0,c)=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查煤礦公司員工的飲食習(xí)慣與月收入之間的關(guān)系,隨機(jī)抽取了30名員工,并制作了這30人的月平均收入的頻率分布直方圖和飲食指數(shù)表(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).其中月收入4000元以上員工中有11人飲食指數(shù)高于70.
20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(Ⅰ)是否有95%的把握認(rèn)為飲食習(xí)慣與月收入有關(guān)系?若有請(qǐng)說(shuō)明理由,若沒(méi)有,說(shuō)明理由并分析原因;
(Ⅱ)以樣本中的頻率作為概率,從該公司所有主食蔬菜的員工中隨機(jī)抽取3人,這3人中月收入4000元以上的人數(shù)為,求的分布列與期望;
(Ⅲ)經(jīng)調(diào)查該煤礦公司若干戶家庭的年收入(萬(wàn)元)和年飲食支出(萬(wàn)元)具有線性相關(guān)關(guān)系,并得到關(guān)于的回歸直線方程:.若該公司一個(gè)員工與其妻子的月收入恰好都為這30人的月平均收入(該家庭只有兩人收入),估計(jì)該家庭的年飲食支出費(fèi)用.
附:
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱中,各棱長(zhǎng)均為4, 、分別是,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)為了了解某社區(qū)居民對(duì)某娛樂(lè)節(jié)目的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該娛樂(lè)節(jié)目時(shí)間的頻率分布直方圖:
(1)求實(shí)數(shù)的值;
(2)根據(jù)統(tǒng)計(jì)結(jié)果,試估計(jì)觀眾觀看該娛樂(lè)節(jié)目時(shí)間的中位數(shù)(結(jié)果保留一位小數(shù));
(3)從觀看時(shí)間在,的人中用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人的觀看時(shí)間都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,,四邊形BDEF是矩形,平面平面ABCD,,H是CF的中點(diǎn).
(1)求證:平面BDEF;
(2)求直線DH與平面CEF所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l過(guò)點(diǎn)M(2,1),且分別交x軸、y軸的正半軸于點(diǎn)A、B.點(diǎn)O是坐標(biāo)原點(diǎn).
(1)當(dāng)△ABO的面積最小時(shí),求直線l的方程;
(2)當(dāng)最小時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為.我們將其結(jié)論推廣:橢圓()上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用.已知,直線與橢圓:()有且只有一個(gè)公共點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線、,且與交于點(diǎn).當(dāng)變化時(shí),求面積的最大值;
(3)若是橢圓上不同的兩點(diǎn),軸,圓過(guò)且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱圓為該橢圓的一個(gè)內(nèi)切圓.試問(wèn):橢圓是否存在過(guò)左焦點(diǎn)的內(nèi)切圓?若存在,求出圓心的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生對(duì)其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用下圖所示的莖葉圖表示30人的飲食指數(shù).(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主)
(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:
主食 蔬菜 | 主食 肉類 | 總計(jì) | |
50歲以下 | |||
50歲以上 | |||
總計(jì) |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“其親屬的飲食習(xí)慣與年齡有關(guān)”?并寫(xiě)出簡(jiǎn)要分析.
附參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)
(1)求b的值,并求出函數(shù)的定義域
(2)若存在區(qū)間,使得時(shí),的取值范圍為,求的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com