已知2x2+4xy+2y2+3x-y=0,試求x與x+2y的取值范圍.
考點(diǎn):不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:利用方程的思想,設(shè)設(shè)x+2y=m,則x=m-2y,原方程消元后得到含有參數(shù)m的關(guān)于y的方程,根據(jù)判別式求出m的范圍,同理可求x的范圍.
解答: 解:設(shè)x+2y=m,則x=m-2y,
∵2x2+4xy+2y2+3x-y=0,
∴m×2(m-2y)+2y2+3(m-2y)-y=0,
整理得,2y2-(4m+7)y+2m2+3m=0,
∴△=(4m+7)2-4×2×(2m2+3m)≥0,
解得m≥-
49
32

即x+2y的取值范圍[-
49
32
,+∞).
關(guān)于x的范圍,將已知方程看成關(guān)于y的方程2y2+(4x-1)y+3x+2x2=0,
∴△=(4x-1)2-4×2×(3x+2x2)≥0,
解得x≤
1
32
,
x的取值范圍(-∞,
1
32
]
點(diǎn)評(píng):本題主要考查了方程的思想,根的存在條件,構(gòu)造關(guān)于某一個(gè)字母的方程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
m2
+
y2
16
=1(m>0)和雙曲線
x2
n2
-
y2
9
=1(n>0)有相同的焦點(diǎn)F1,F(xiàn)2,點(diǎn)P為橢圓和雙曲線的一個(gè)交點(diǎn),則|PF1||PF2|的值為(  )
A、16B、25C、9D、不為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
、
b
滿足|
a
|=2,|
b
|=1,且
a
b
的夾角為
3
,求:
(1)
a
b
的方向上的投影;
(2)(
a
-2
b
)•
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=
t
-
1
t
y=3(t+
1
t
)+2
(t為參數(shù),t>0).求曲線C的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,公差d≠0,a2是a1與a4的等比中項(xiàng),且a4-a1=6;在等比數(shù)列{bn}中,公比q>0,且b1=a1,b3=a4
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=
1
(an+2)lgbn2
,求數(shù)列{cn}的前n項(xiàng)和Tn,以及和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)圓x2+y2=1在矩陣A=
10
02
對應(yīng)的變換作用下得到曲線F,求曲線F的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知An5=56Cn7,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1+2a2+3a3+…+nan的值.
(Ⅲ) 求S=Cn0+3Cn1+5Cn2+…+(2n-1)Cnn-1+(2n+1)Cnn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=10,a2=5,an-an+2=2(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前2n項(xiàng)和為S2n,當(dāng)S2n取最大值時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,sinx),
n
=(2,1),函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值;
(2)若△ABC的內(nèi)角A、B所對的邊分別為a、b且f(A)=
14
5
,f(B)=
31
13
,a+b=77,求a的值.

查看答案和解析>>

同步練習(xí)冊答案