【題目】設(shè)是某港口水的深度(單位:)關(guān)于時間的函數(shù),其中.下表是該港口某一天從時至時記錄的時間與水深的關(guān)系:

t

0

3

6

9

12

15

18

21

24

y

5.0

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

經(jīng)長期觀察,函數(shù)的圖像可以近似看成函數(shù)的圖像.最能近似表示表中數(shù)據(jù)間對應(yīng)關(guān)系的函數(shù)是__________

【答案】y5.02.5sint.

【解析】

由數(shù)據(jù)可知函數(shù)的周期T12,又T12,所以ω.函數(shù)的最大值為7.5,最小值為2.5,即hA7.5,hA2.5,解得h5.0,A2.5,所以函數(shù)為yf(x)5.02.5sin,又yf(3)5.02.5sin7.5,所以sincosφ1,即φ2kπ,k∈Z,所以最能近似表示表中數(shù)據(jù)間對應(yīng)關(guān)系的函數(shù)是y5.02.5sint.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因為對一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請由上述結(jié)論寫出關(guān)于a1,a2,…,an的推廣式;

(2)參考上述證法,請對你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,∠PAC=BAC=90°,PA=PB,點D,F分別為BC,AB的中點.

1)求證:直線DF∥平面PAC

2)求證:PFAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.

(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求證:二面角C﹣PB﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中以O(shè)為極點,x軸正半軸為極軸建立坐標系.圓C1 , 直線C2的極坐標方程分別為ρ=4sinθ,ρcos( )=2
(1)求C1與C2交點的極坐標;
(2)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知任意角以坐標原點為頂點,軸的非負半軸為始邊,若終邊經(jīng)過點,且,定義:,稱“”為“正余弦函數(shù)”,對于“正余弦函數(shù)”,有同學(xué)得到以下性質(zhì):

①該函數(shù)的值域為; ②該函數(shù)的圖象關(guān)于原點對稱;

③該函數(shù)的圖象關(guān)于直線對稱; ④該函數(shù)為周期函數(shù),且最小正周期為;

⑤該函數(shù)的遞增區(qū)間為.

其中正確的是__________.(填上所有正確性質(zhì)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,E為BD的中點,G為PD的中點,△DAB≌△DCB,EA=EB=AB=1,PA= ,連接CE并延長交AD于F

(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農(nóng)產(chǎn)品.以x(單位:t,100≤x≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(1)將T表示為x的函數(shù);
(2)根據(jù)直方圖估計利潤T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案