精英家教網 > 高中數學 > 題目詳情

已知某類學習任務的掌握程度y與學習時間t(單位時間)之間有如下函數關系:,這里我們稱這一函數關系為“學習曲線”,若這類學習任務中的某項任務有如下表格中的數據:

    t

    4

    8

   50%

    80%

  (1)試確定該項學習任務的“學習曲線”;

  (2)計算,并指出其實際意義;

  (3)若定義在上的平均學習效率為,請問這項學習任務從哪一時刻開始的2個單位時間內平均效率最高?

(1)由題意,得 ,計算得

     ∴“學習曲線”為

(2),實際含義是開始學習時,這項學習任務的掌握程度為20%

(3)設從第x個單位時間起的2個單位時間內的平均效率為,則

       

       令,則,顯然當時,最大。

       這時由,得x=3,

       從第3個單位時間起的2個單位時間內的平均學習效率最高。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知某類學習任務的掌握程度y與學習時間t(單位時間)之間的關系為y=f(t)=
1
1+a•2-bt
•100%
,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項學習任務的“學習曲線”的關系式f(t);
(Ⅱ)若定義在區(qū)間[x1,x2]上的平均學習效率為η=
y2-y1
x2-x1
,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年濟寧質檢理)(12分)

已知某類學習任務的掌握程度與學習時間(單位時間)之間的關系為

,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:

(1)試確定該項學習任務的“學習曲線”的關系式;

(2)若定義在區(qū)間上的平均學習效率為,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.

查看答案和解析>>

科目:高中數學 來源:2012屆福建省福州市高二期末理科考試數學試卷 題型:填空題

已知某類學習任務的掌握程度與學習時間(單位時間)之間有如下函數關系:

(這里我們稱這一函數關系為“學習曲線”).

若定義在區(qū)間上的平均學習效率為,這項學習任務從在從第

單位時間起的2個單位時間內的平均學習效率最高.則=      

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某類學習任務的掌握程度y與學習時間t(單位時間)之間的關系為y=f(t)=數學公式,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項學習任務的“學習曲線”的關系式f(t);
(Ⅱ)若定義在區(qū)間[x1,x2]上的平均學習效率為數學公式,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.

查看答案和解析>>

科目:高中數學 來源:《函數的應用》2012年單元測試卷(南寧外國語學校)(解析版) 題型:解答題

已知某類學習任務的掌握程度y與學習時間t(單位時間)之間的關系為y=f(t)=,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項學習任務的“學習曲線”的關系式f(t);
(Ⅱ)若定義在區(qū)間[x1,x2]上的平均學習效率為,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.

查看答案和解析>>

同步練習冊答案