(2012•上饒一模)f(x)=sin
π
3
x-
3
cos
π
3
x
,則f(1)+f(2)+…+f(2012)=
3
3
分析:由兩角和與差的正弦、余弦公式展開化簡可得f(x),然后利用三角函數(shù)的周期代入求值.
解答:解:∵f(x)=sin
π
3
x-
3
cos
π
3
x
=2(
1
2
sin
π
3
x- 
3
2
cos
π
3
x
)=2sin(
π
3
x
-
π
3
)=2sin
π
3
[(x-1)].
周期為
π
3
=6,
又f(1)+f(2)+…+f(6)=0+
3
+
3
+0+(-
3
)-
3
=0.
∵2012=6×335+2,
∴f(1)+f(2)+…+f(2012)=f(1)+f(2)=0+
3
=
3
點評:以數(shù)列求和為載體,綜合考查兩角和與差的正弦與余弦公式及三角函數(shù)的周期性,綜合知識點較多,但都是基本運算,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)設點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)關(guān)于x的方程:(x2-1)2-|x2-1|+k=0,給出下列四個命題,其中真命題的個數(shù)有( 。
(1)存在實數(shù)k,使得方程恰有2個不同的實根
(2)存在實數(shù)k,使得方程恰有4個不同的實根
(3)存在實數(shù)k,使得方程恰有5個不同的實根
(4)存在實數(shù)k,使得方程恰有8個不同的實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)實數(shù)x,y滿足不等式組
y≥0
x-y≥0
2x-y-2≤0
,則ω=
y-1
x+1
的取值范圍是
[-1,
1
3
]
[-1,
1
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=a,E是PC的中點,作EF⊥PB交PB于點F.
(Ⅰ)證明:PA∥平面EDB;
(Ⅱ)求三棱錐P-DEF的體積.

查看答案和解析>>

同步練習冊答案