設(shè)函數(shù)f(x)= ×,其中向量="(2cosx,1)," =(cosx, sin2x+m).
(1)求函數(shù)f(x)的最小正周期和f(x)在[0, p]上的單調(diào)遞增區(qū)間;
(2)當(dāng)xÎ[0,]時,ô f(x)ô <4恒成立,求實數(shù)m的取值范圍.
(1) T=p, [0,],[, p] (2) -4<m<1.
解析試題分析:(1)f(x)= ×=2cos2x+sin2x+m 1分
=cos2x+sin2x+m+1=2sin(2x+)+m+1 3分
∴f(x)的最小正周期T=p, 4分
在[0, p]上的單調(diào)遞增區(qū)間為[0,],[,p] 6分
(2)∵當(dāng)xÎ[0,]時,遞增,當(dāng)xÎ[,]時,遞減,
∴當(dāng)時,的最大值等于. 8分
當(dāng)x=時,的最小值等于m. 10分
由題設(shè)知解之得,-4<m<1. 12分
考點(diǎn):本題考查了三角函數(shù)的性質(zhì)及最值
點(diǎn)評:三角函數(shù)最值問題是歷年高考重點(diǎn)考查的知識點(diǎn)之一,它不僅與三角自身的常見基礎(chǔ)知識如三角函數(shù)概念、圖象和性質(zhì),誘導(dǎo)公式,同角關(guān)系式,兩角和與差的三角公式等密切相關(guān)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一扇形的周長為c(c>0),當(dāng)扇形的弧長為何值時,它有最大面積?并求出面積的最大值.(扇形面積S=Rl,其中R為扇形半徑,l為弧長)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com