【題目】設(shè)A,B是x軸上的兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2,且|PA|=|PB|,若直線PA的方程為x-y+1=0,則直線PB的方程是( ).
A.x+y-5=0
B.2x-y-1=0
C.2y-x-4=0
D.2x+y-7=0

【答案】A
【解析】解答:根據(jù)|PA|=|PB|得到點(diǎn)P一定在線段AB的垂直平分線上,根據(jù)y=x+1求出點(diǎn)A的坐標(biāo)為(-1,0),由P的橫坐標(biāo)是2代入y=x+1求得縱坐標(biāo)為3,則P(2,3),又因?yàn)镼為A與B的中點(diǎn),所以得到B(5,0),所以直線PB的方程為: ,化簡(jiǎn)后為x+y-5=0,故選A. 分析:本題主要考查了兩點(diǎn)間距離公式的應(yīng)用,解決問題的關(guān)鍵是根據(jù)所給條件進(jìn)行發(fā)現(xiàn)得到P一定在線段AB的垂直平分線上,然后根據(jù)所給條件求得B點(diǎn)坐標(biāo),寫出直線方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, 已知定圓,動(dòng)圓過點(diǎn)且與圓相切,記動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)是曲線上兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為 (異于點(diǎn)),若直線分別交軸于點(diǎn),證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ (ab≠0).
(1)當(dāng)b=a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程是y=2x﹣3,證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=1和直線y=x所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>4成立的x的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國(guó)電子商務(wù)行業(yè)迎來蓬勃發(fā)展的新機(jī)遇,網(wǎng)購(gòu)成了大眾購(gòu)物的一個(gè)重要組成部分,可人們?cè)陂_心購(gòu)物的同時(shí),假冒偽劣產(chǎn)品也在各大購(gòu)物網(wǎng)站頻頻出現(xiàn),為了讓顧客能夠在網(wǎng)上買到貨真價(jià)實(shí)的好東西,各大購(gòu)物平臺(tái)也推出了對(duì)商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從某購(gòu)物網(wǎng)站的評(píng)價(jià)系統(tǒng)中選出100次成功的交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為 ,對(duì)服務(wù)的好評(píng)率為 ,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為30次.
(1)列出關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式從這100次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評(píng)的概率.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:sinθ=ρcos2θ,過點(diǎn)M(﹣1,2)的直線l: (t為參數(shù))與曲線C相交于A、B兩點(diǎn).求:
(1)線段AB的長(zhǎng)度;
(2)點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形 的三個(gè)頂點(diǎn)的坐標(biāo)為 ,
(1)在 ABC中,求邊AC中線所在直線方程;
(2)求平行四邊形 的頂點(diǎn)D的坐標(biāo)及邊BC的長(zhǎng)度;
(3)求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,在全校高一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

合計(jì)

男生

60

20

80

女生

10

10

20

合計(jì)

70

30

100


(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“男生和女生在喜歡數(shù)學(xué)方面有差異”;
(2)在被調(diào)查的女生中抽出5名,其中2名喜歡數(shù)學(xué),現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡數(shù)學(xué)的概率.
附:參考公式:K2= ,其中n=a+b+c+d

P(K2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2若選取的是12月1日12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;

3若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:,)

查看答案和解析>>

同步練習(xí)冊(cè)答案