設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)之和為Sn滿足Sn=數(shù)學(xué)公式
①先求出a1,a2,a3,a4的值,然后猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.
②設(shè)數(shù)學(xué)公式,數(shù)列{bn}的前n項(xiàng)和為Tn

解:①在 Sn=中,令n=1可得,a1=,∴a1=1. 令n=2 可得,1+a2=,
a2 =3,同理可求,a3=5,a4=7.
猜測an=2n-1.
證明:當(dāng)n=1時(shí),猜測顯然成立,假設(shè) ak=2k-1,
則由 ak+1=sk+1-sk=-=-k2,解得 ak+1=2k+1,
故n=k+1時(shí),猜測仍然成立,
③∵==- ),
∴Tn=[(1-)+()+( )+…+(-)]=(1-
=
分析:①求出數(shù)列的前若干項(xiàng),歸納出一般結(jié)論,用數(shù)學(xué)歸納法證明.
③把通項(xiàng) 裂項(xiàng)變?yōu)?- ),其前n項(xiàng)的和 Tn=
[(1-)+()+( )+…+(-)]=(1- ) 化簡可得結(jié)果.
點(diǎn)評(píng):本題考查歸納推理,用數(shù)學(xué)歸納法證明等式,用裂項(xiàng)法進(jìn)行數(shù)列求和,裂項(xiàng)求和是解題的難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)之和是bn,數(shù)列{bn}前n項(xiàng)之積是cn,且bn+cn=1,則數(shù)列{
1an
}
中最接近108的項(xiàng)是第
10
10
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
1
2
(an+
1
an
)
,(n∈N*).
(Ⅰ)試求a1,a2,a3;
(Ⅱ)猜想an的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)和是bn,數(shù)列{bn}的前n項(xiàng)之積是cn,且bn+cn=1(n∈N*),則{
1an
}
的前10項(xiàng)之和等于
440
440

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•嘉定區(qū)一模)設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,Sn是an2和an的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整數(shù)m,使得不等式Sn-1005>
a
2
n
2
對(duì)一切滿足n>m的正整數(shù)n都成立?若存在,則這樣的正整數(shù)m共有多少個(gè)?并求出滿足條件的最小正整數(shù)m的值;若不存在,請(qǐng)說明理由;
(3)請(qǐng)構(gòu)造一個(gè)與數(shù)列{Sn}有關(guān)的數(shù)列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出這個(gè)極限值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)之和為bn,數(shù)列{bn}的前n項(xiàng)之和為cn,且bn+cn=1,則|c100-a100|=
1
1

查看答案和解析>>

同步練習(xí)冊答案