已知△ABC中,a,b,c為角A,B,C所對的邊,且b(3b-c)cosA=acosC.
(Ⅰ)求cosA的值;
(Ⅱ)若△ABC的面積為2
2
,并且邊AB上的中線CM的長為
17
2
,求b,c的長.
考點:余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:(Ⅰ)已知等式利用正弦定理化簡,整理后求出cosA的值即可;
(Ⅱ)由cosA的值,利用同角三角函數(shù)間的基本關系求出sinA的值,再利用三角形面積公式列出關系式,將sinA的值與已知面積代入求出bc=6①,再利用余弦定理列出關系式,記作②,聯(lián)立①②即可求出b與c的值.
解答: 解:(Ⅰ)已知等式b(3b-c)cosA=abcosC,由正弦定理化簡得:sinB(3sinB-sinC)cosA=sinAsinBcosC,
∵sinB≠0,
∴3sinBcosA=sinAcosC+sinCcosA=sinB,
∴cosA=
1
3

(Ⅱ)∵cosA=
1
3
,
∴sinA=
1-cos2A
=
2
2
3
,
由題意得:S△ABC=
1
2
bcsinA=2
2
,即bc=6①,
由余弦定理得:cosA=
b2+
c2
4
-
17
4
2b•
c
2
=
1
3
,即4b2+c2=25②,
聯(lián)立①②,解得:b=2,c=3或b=
3
2
,c=4.
點評:此題考查了正弦、余弦定理,三角形面積公式,以及同角三角函數(shù)間的基本關系,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x+
12
3x
(x<0),求函數(shù)f(x)的最大值,以及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2013-2014第二學年度某校對高一年級課外活動學生在教室學習的情況進行了調(diào)查,其中抽查了高一(2)班的50名學生得到如下2×2列聯(lián)表:
在教室 不在教室 合計
6 24 30
14 6 20
合計 20 30 50
(1)根據(jù)獨立性檢驗的基本思想,約有多大的把握認為“在課外活動女生比男生更喜歡讀書”?
(2)若從高一(2)班抽出學生對老師進行問卷調(diào)查,用分層抽樣方法抽取5人,男生與女生各抽多少?
(3)若從抽出的5名學生中抽出兩名學生,按照某種方案進行抽取所得到的概率是
7
10
.寫出這種方案,并給出計算過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高校的自主招生考試設置了自薦、筆試和面試三個環(huán)節(jié),并規(guī)定某個環(huán)節(jié)通過后才能進入下一環(huán)節(jié),且三個環(huán)節(jié)都通過才能被錄。硨W生A三個環(huán)節(jié)依次通過的概率組成一個公差為
1
8
的等差數(shù)列,且第一個環(huán)節(jié)不通過的概率超過
1
2
,第一個環(huán)節(jié)通過但第二個環(huán)節(jié)不通過的概率為
5
32
,假定每個環(huán)節(jié)學生是否通過是相互獨立的.
(Ⅰ)求學生A被錄取的概率;
(Ⅱ)記學生A通過的環(huán)節(jié)數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù).
(1)全體排成一行,其中甲只能在中間或者兩邊位置;
(2)全體排成一行,男生不能排在一起;
(3)全體排成一行,其中甲、乙、丙三人從左至右的順序不變;
(4)全體排成一行,甲、乙兩人中間必須有3人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在m>n>0上的偶函數(shù)f(x)的周期為2,且當0≤x≤1時,f(x)=-
1-x2
則f(-2013)+f(-2012)+f(-2011)+…+f(2012)+f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)a,b滿足log2(a-2)+log2(2b-2)=3,則a+b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將集合{1,2,3,4,5,6,7,8}中的元素作全排列,使得除了最左端的這個數(shù)之外,對于其余每個數(shù)n,在n的左邊某個位置上總有一個數(shù)與n之差的絕對值為1,那么,滿足條件的排列個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,AH為BC邊上的高,給出以下四個結論:
AH
BC
=0;
AH
•(
AB
+
BC
)=
AH
AB
;
③若
AB
AC
>0,則△ABC為銳角三角形;
AC
AH
|
AH
|
=csinB.
其中所有正確結論的序號是
 

查看答案和解析>>

同步練習冊答案