已知二元一次不等式組
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
所表示的平面區(qū)域?yàn)镸,若在區(qū)間(0,14)內(nèi)任取一個數(shù)a,則函數(shù)y=ax的圖象經(jīng)過區(qū)域M的概率為
 
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:先依據(jù)不等式組
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
,結(jié)合二元一次不等式(組)與平面區(qū)域的關(guān)系畫出其表示的平面區(qū)域,再利用函數(shù)y=ax(a>0,a≠1)的圖象特征,結(jié)合區(qū)域的角上的點(diǎn)求出a的取值范圍,再以長度為測度,即可求出概率.
解答: 解:平面區(qū)域M,如圖所示.
求得A(2,10),C(3,8),B(1,9).
由圖可知,欲滿足條件必有a>1且圖象在過B、C兩點(diǎn)的圖象之間.
當(dāng)圖象過B點(diǎn)時,a1=9,∴a=9.
當(dāng)圖象過C點(diǎn)時,a3=8,∴a=2.
故a的取值范圍為[2,9],
∴函數(shù)y=ax的圖象經(jīng)過區(qū)域M的概率為
9-2
14-0
=
1
2

故答案為:
1
2
點(diǎn)評:本題主要考查了用平面區(qū)域二元一次不等式組、指數(shù)函數(shù)的圖象與性質(zhì),以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,考查概率的計(jì)算,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(1-x)≤2;
(Ⅱ)若a<0,求證:f(ax)-af(x)≥f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
2a+2b
2
2
a+b
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-a(x+1)(e是自然對數(shù)的底數(shù),e=2.71828…),且f′(0)=0.
(Ⅰ)求實(shí)數(shù)a的值,并求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)-f(-x),對任意x1,x2∈R(x1<x2),恒有
g(x2)-g(x1)
x2-x1
>m成立.求實(shí)數(shù)m的取值范圍;
(Ⅲ)若正實(shí)數(shù)λ1,λ2滿足λ12=1,x1,x2∈R(x1≠x2),試證明:f(λ1x12x2)<λ1f(x1)+λ2f(x2);并進(jìn)一步判斷:當(dāng)正實(shí)數(shù)λ1,λ2,…,λn滿足λ12+…+λn=1(n∈N,n≥2),且x1,x2,…,xn是互不相等的實(shí)數(shù)時,不等式f(λ1x12x2+…+λnxn)<λ1f(x1)+λ2f(x2)+…+λnf(xn)是否仍然成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩名籃球運(yùn)動員互不影響地在同一位置投球,甲、乙每次投球命中率分別為
1
2
和P,若已知乙投球三次投中次數(shù)的期望與方差和為
8
3

(Ⅰ)求乙在三次投球中恰投中一次的概率;
(Ⅱ)若甲投球1次,乙投球3次,將兩人投中的次數(shù)之差的絕對值記為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+sin2x-1圖象的對稱中心是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
2x-y≥2
3x+4y≤12
y≥-2
,則z=x-3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos2x-6cosx+1,x∈[0,
π
2
]的值域?yàn)?div id="we06wx1" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線f(x)=lnx在點(diǎn)M(e,f(e))處的切線方程
 

查看答案和解析>>

同步練習(xí)冊答案