【題目】已知f(x)=ax2+x﹣a,a∈R
(1)若a=1,解不等式f(x)≥1;
(2)若a<0,解不等式f(x)>1.
【答案】
(1)解:若a=1,不等式f(x)≥1可化為:x2+x﹣1≥1,即x2+x﹣2≥0,
解得:x∈(﹣∞,﹣2]∪[1,+∞)
(2)解:若a<0,不等式f(x)≥1可化為:ax2+x﹣a﹣1>0,即(x﹣1)(x+ )<0,
當﹣ <1,即a<﹣ 時,不等式的解集為(﹣ ,1);
當﹣ =1,即a=﹣ 時,不等式的解集為;
當﹣ >1,即﹣ <a<0時,不等式的解集為(1,﹣ )
【解析】(1)若a=1,不等式f(x)≥1可化為:x2+x﹣1≥1,即x2+x﹣2≥0,解得答案;(2)若a<0,不等式f(x)≥1可化為:ax2+x﹣a﹣1>0,即(x﹣1)(x+ )<0,分類討論可得不同情況下不等式的解集.
【考點精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), , ,且的最小值為.
(1)求的值;
(2)若不等式對任意恒成立,其中是自然對數(shù)的底數(shù),求的取值范圍;
(3)設曲線與曲線交于點,且兩曲線在點處的切線分別為, .試判斷, 與軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個數(shù);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)當t=4,x∈[1,2]時F(x)=g(x)﹣f(x)有最小值為2,求a的值;
(2)當0<a<1,x∈[1,2]時,有f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.
(備注:函數(shù)y=x+ 在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1﹣ (x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( )
A.
B.
C. 且m≠0
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求b的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生責任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com