(本小題滿分13分)
正△的邊長為4,是邊上的高,分別是和邊的中點,現(xiàn)將△沿翻折成直二面角.
(1)試判斷直線與平面的位置關系,并說明理由;
(2)求二面角的余弦值;
(3)在線段上是否存在一點,使?證明你的結(jié)論.
(1)略
(2)
(3)在線段BC上存在點P使AP⊥DE
【解析】(本小題滿分13分)
解:法一:(1)如圖:在△ABC中,由E、F分別是AC、BC中點,
得EF//AB,又AB平面DEF,EF平面DEF.
∴AB∥平面DEF.
(2)∵AD⊥CD,BD⊥CD
∴∠ADB是二面角A—CD—B的平面角
∴AD⊥BD ∴AD⊥平面BCD
取CD的中點M,這時EM∥AD ∴EM⊥平面BCD
過M作MN⊥DF于點N,連結(jié)EN,則EN⊥DF
∴∠MNE是二面角E—DF—C的平面角…………6分
在Rt△EMN中,EM=1,MN=
∴tan∠MNE=,cos∠MNE= ………………………8分
(3)在線段BC上存在點P,使AP⊥DE……………………10分
證明如下:在線段BC上取點P。使,過P作PQ⊥CD與點Q,
∴PQ⊥平面ACD ∵在等邊△ADE中,∠DAQ=30°
∴AQ⊥DE∴AP⊥DE…………………………13分
法二:(2)以點D為坐標原點,直線DB、DC為x軸、y軸,建立空間直角坐標系,
則A(0,0,2)B(2,0,0)C(0,……4分
平面CDF的法向量為設平面EDF的法向量為
則 即
所以二面角E—DF—C的余弦值為 …8分
(3)在平面坐標系xDy中,直線BC的方程為
設
…………12分
所以在線段BC上存在點P,使AP⊥DE ………………14分
另解:設
又 …………………12分
把
所以在線段BC上存在點P使AP⊥DE …………….13分
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com