(2009•黃浦區(qū)二模)已知點(diǎn)P(0,b)是y軸上的動(dòng)點(diǎn),點(diǎn)F(1,0)、M(a,0)滿足PM⊥PF,動(dòng)點(diǎn)N滿足2
PN
+
NM
=
0

(1)求動(dòng)點(diǎn)N所在曲線C的方程.
(2)已知點(diǎn)D(1,2)在曲線C上,若曲線C上兩點(diǎn)A、B(都不同于D點(diǎn))滿足DA⊥DB,試證明直線AB必過定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).
分析:(1)設(shè)動(dòng)點(diǎn)N(x,y),由于PM⊥PF,動(dòng)點(diǎn)N滿足2
PN
+
NM
=
0
.用坐標(biāo)表示向量,可得坐標(biāo)之間的關(guān)系,進(jìn)而化簡方程即可;
(2)利用DA⊥DB,用坐標(biāo)表示對應(yīng)的向量,從而有數(shù)量積為0,進(jìn)而有y1y2=-2(y1+y2)-20.代入直線AB的方程,即可知直線恒過定點(diǎn).
解答:解:(1)設(shè)動(dòng)點(diǎn)N(x,y).                      (1分)
依據(jù)題意,有
PN
=(x,y-b),
PM
=(a,-b),
PF
=(1,-b)
NM
=(a-x,-y)
.(3分)
PM⊥PF,2
PN
+
NM
=
0
,則
PM
PF
=0
2
PN
=-
NM
,進(jìn)一步有
a+b2=0
x=-a
y=2b

因此,y2=4x(x≥0).      (7分)
所以曲線C的方程是y2=4x(x≥0).                。8分)
證明 (2)因A、B是曲線C:y2=4x(x≥0)上不同于D點(diǎn)的兩點(diǎn),
可設(shè)A(
y
2
1
4
y1)
、B(
y
2
2
4
,y2)(y1y2,
y
 
1
y2都不等于2)
,則
DA
=(
y
2
1
4
-1,y1-2)
、
DB
=(
y
2
2
4
-1,y2-2)
,
AB
=(
y
2
2
4
-
y
2
1
4
,
y
 
2
-y1)
.                     (10分)
又DA⊥DB,故
DA
DB
=0,即(
y
2
1
4
-1)(
y
2
2
4
-1)+(y1-2)(y2-2)=0

進(jìn)一步化簡得y1y2=-2(y1+y2)-20.                        。12分)
由直線AB的法向量為
n
=(
y
 
1
-y2,
y
2
2
4
-
y
2
1
4
)
,可得直線AB的方程:(y1-y2)•(x-
y_2 
4
)+(
y
2
2
4
-
y
2
1
4
)(y-y1)=0
,
x-
y1+y2
4
y+
y1y2
4
=0
.把y1y2=-2(y1+y2)-20代入此方程,得x-
y1+y2
4
y-
2(y1+y2)
4
-5=0
.(14分)
進(jìn)一步把直線AB的方程化為(x-5)-
y1+y2
4
(y+2)=0
,知其恒過定點(diǎn)(5,-2).(15分)
所以直線AB:x-
y1+y2
4
y-
y1+y2
2
-5=0
恒過定點(diǎn),且定點(diǎn)坐標(biāo)為(5,-2).    (16分)
證畢!
點(diǎn)評:本題的考點(diǎn)是直線與圓錐曲線的位置關(guān)系,主要考查軌跡方程的求解,考查直線恒過定點(diǎn)問題,關(guān)鍵是用坐標(biāo)表示向量,利用向量的數(shù)量積為0解決,恒過定點(diǎn)應(yīng)注意其求解的策略.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)設(shè)α∈(0,
π
2
),則
sin3α
cosα
+
cos3α
sinα
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸正半軸重合,點(diǎn)P(-4m,3m)(m<0)是角α終邊上一點(diǎn),則2sinα+cosα=
-
2
5
-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)關(guān)于x的方程(2+x)i=2-x(i是虛數(shù)單位)的解x=
-2i
-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)若函數(shù)f(x)=
x
2x+1
-ax-2
是定義域?yàn)镽的偶函數(shù),則實(shí)數(shù)a=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)已知全集U=R,A={x|
x-1x-2
≥0,x∈R}
,B={x||x-1|≤1,x∈R},則(CRA)∩B=
(1,2]
(1,2]

查看答案和解析>>

同步練習(xí)冊答案