若f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x(1-x),求函數(shù)f(x)的解析式.
分析:設(shè)x<0,利用函數(shù)是偶函數(shù),得到-x>0,然后代入求解即可.
解答:解:設(shè)x<0,則-x>0,
所以f(-x)=-x(1+x),
因為f(x)是定義在R上的偶函數(shù),所以f(-x)=f(x),
所以f(-x)=-x(1+x)=f(x),即f(x)=-x(1+x),x>0.
所以f(x)=
x(1-x),x≥0
-x(1+x),x<0
點評:本題主要考查函數(shù)奇偶性的應(yīng)用,利用對稱性將條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的函數(shù),對任意的實數(shù)x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2,且f(1)=0,則f(2009)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的函數(shù),對任意的實數(shù)x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(1)=4,則f(2009)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,f(x)=
1
x+1
,則f(
1
2
)
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=-
1x
在R上單調(diào)遞增;
②若函數(shù)y=x2+2ax+1在(-∞,-1]上單調(diào)遞減,則a≤1;
③若log0.7(2m)<log0.7(m-1),則m>-1;
④若f(x)是定義在R上的奇函數(shù),則f(1-x)+f(x-1)=0.
其中正確的序號是
 

查看答案和解析>>

同步練習(xí)冊答案