根據(jù)下列圖中所給出的一個(gè)物體的三視圖,試畫出它的形狀.
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:(1)由已知中三視圖有兩個(gè)三角形,可得該幾何體為錐體,進(jìn)而根據(jù)俯視圖可得該幾何體為正六棱錐;
(2)由已知中三視圖有兩個(gè)矩形,可得該幾何體為柱體,進(jìn)而根據(jù)俯視圖可得該幾何體為三棱柱;
解答: 解:已知中物體的直觀圖為:
點(diǎn)評(píng):本題只要考查三視圖的識(shí)別和判斷,要求掌握常見空間幾何體的三視圖,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[-2,1],求函數(shù)f(x)=-(
1
4
x+4(
1
2
x+5的值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(2,3),且被兩條平行直線l1:3x+4y-7=0,l2:3x+4y+8=0截得的線段長(zhǎng)為d.
(1)求d的最小值;
(2)當(dāng)直線l與x軸平行,試求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?x∈R,ex≥ax+b恒成立.
(1)當(dāng)b=1時(shí),求a的范圍.
(2)求a•b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+b
2x+1+a
是奇函數(shù).
(1)求a,b的值
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍
(3)證明對(duì)任何實(shí)數(shù)x,c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線y=-2x上,并且與直線x+y=1相切于點(diǎn)A(2,-1).
(Ⅰ)求圓C的方程;
(Ⅱ)從圓C外一點(diǎn)M引圓C的切線MN,N為切點(diǎn),且MN=MO(O為坐標(biāo)原點(diǎn)),求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

OX,OY,OZ是空間交于同一點(diǎn)O的互相垂直的三條直線,點(diǎn)P到這三條直線的距離分別為3,4,5,則OP長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=1,a2=2,an=
an-1
an-2
(n≥3且n∈N*),則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(x+3)-1(a>0且a≠1)的圖象恒過定點(diǎn)A,則點(diǎn)A坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案