【題目】某餐廳通過(guò)查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬(wàn)人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù) (萬(wàn)人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程.

(2)已知購(gòu)買(mǎi)原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷(xiāo)售收入為700元,多余的原材料只能無(wú)償返還,據(jù)悉本次交易大會(huì)大約有15萬(wàn)人參加,根據(jù)(1)中求出的線(xiàn)性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買(mǎi)多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷(xiāo)售收入原材料費(fèi)用).

參考公式: , .

參考數(shù)據(jù): , , .

【答案】(1);(2)餐廳應(yīng)該購(gòu)買(mǎi)36袋原材料,才能使利潤(rùn)獲得最大,最大利潤(rùn)為11870元.

【解析】試題分析:(1)根據(jù)公式求出b,再將樣本中心代入求出a,進(jìn)而得到回歸方程;(2,利潤(rùn)為賺的錢(qián)減去花出去的錢(qián),根據(jù)分段函數(shù)的表達(dá)式,分段列出利潤(rùn)表達(dá)式,分別討論利潤(rùn)的最值,最終取分段函數(shù)中較大的利潤(rùn)值.

解析:

(1)由所給數(shù)據(jù)可得: , ,

, ,

關(guān)于的線(xiàn)性回歸方程為.

(2)由(1)中求出的線(xiàn)性回歸方程知,當(dāng)時(shí), ,即預(yù)計(jì)需要原材料袋,

因?yàn)?/span>,所以當(dāng)時(shí),

利潤(rùn),當(dāng)時(shí), ;

當(dāng)時(shí),利潤(rùn),當(dāng)時(shí), .

綜上所述,餐廳應(yīng)該購(gòu)買(mǎi)36袋原材料,才能使利潤(rùn)獲得最大,最大利潤(rùn)為11870元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),某邊遠(yuǎn)山區(qū)每戶(hù)居民月用電量劃分為三檔:月用電量不超過(guò)150度,按0.6元/度收費(fèi),超過(guò)150度但不超過(guò)250度的部分每度加價(jià)0.1元,超過(guò)250度的部分每度再加價(jià)0.3元收費(fèi).

(1)求該邊遠(yuǎn)山區(qū)某戶(hù)居民月用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

(2)已知該邊遠(yuǎn)山區(qū)貧困戶(hù)的月用電量(單位:度)與該戶(hù)長(zhǎng)期居住的人口數(shù)(單位:人)間近似地滿(mǎn)足線(xiàn)性相關(guān)關(guān)系:的值精確到整數(shù)),其數(shù)據(jù)如表:

14

15

17

18

161

168

191

200

現(xiàn)政府為減輕貧困家庭的經(jīng)濟(jì)負(fù)擔(dān),計(jì)劃對(duì)該邊遠(yuǎn)山區(qū)的貧困家庭進(jìn)行一定的經(jīng)濟(jì)補(bǔ)償,給出兩種補(bǔ)償方案供選擇:一是根據(jù)該家庭人數(shù),每人每戶(hù)月補(bǔ)償6元;二是根據(jù)用電量每人每月補(bǔ)償為用電量)元,請(qǐng)根據(jù)家庭人數(shù)分析,一個(gè)貧困家庭選擇哪種補(bǔ)償方式可以獲得更多的補(bǔ)償?

附:回歸直線(xiàn)中斜率和截距的最小二乘法估計(jì)公式分別為:

,.

參考數(shù)據(jù):,,,,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將從點(diǎn)M出發(fā)沿縱、橫方向到達(dá)點(diǎn)N的任一路徑稱(chēng)為M到N的一條“L路徑”.如圖所示的路徑MM1M2M3N與路徑MN1N都是M到N的“L路徑”.某地有三個(gè)新建居民區(qū),分別位于平面xOy內(nèi)三點(diǎn)A(3,20),B(﹣10,0),C(14,0)處.現(xiàn)計(jì)劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點(diǎn)P處修建一個(gè)文化中心.

(1)寫(xiě)出點(diǎn)P到居民區(qū)A的“L路徑”長(zhǎng)度最小值的表達(dá)式(不要求證明);
(2)若以原點(diǎn)O為圓心,半徑為1的圓的內(nèi)部是保護(hù)區(qū),“L路徑”不能進(jìn)入保護(hù)區(qū),請(qǐng)確定點(diǎn)P的位置,使其到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)的焦點(diǎn)為,點(diǎn)是拋物線(xiàn)上一點(diǎn),且

(1)求的值;

(2)若為拋物線(xiàn)上異于的兩點(diǎn),且.記點(diǎn)到直線(xiàn)的距離分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過(guò)900的概率為p0
(1)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運(yùn)公司用A,B兩種型號(hào)的車(chē)輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車(chē)每天往返一次,A,B兩種車(chē)輛的載客量分別為36人和60人,從甲地去乙地的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過(guò)21輛車(chē)的客運(yùn)車(chē)隊(duì),并要求B型車(chē)不多于A型車(chē)7輛.若每天要以不小于p0的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車(chē)、B型車(chē)各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的極值;

2)當(dāng)時(shí),討論的單調(diào)性;

3)若對(duì)任意的,,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),證明:函數(shù)不可能存在兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),,且,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案