證明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1),其中n∈N*

答案:
解析:

  證明:(1)當(dāng)n=1時(shí),左邊=1+1=2,右邊=21·1=2,等式成立.

  (2)假設(shè)當(dāng)n=k時(shí),等式成立,即(k+1)(k+2)…(k+k)=2k·1·3…(2k-1).

  則當(dāng)n=k+1時(shí),

  (k+1+1)(k+1+2)…(k+1+k-1)(k+1+k)(k+1+k+1)

  =(k+2)(k+3)…(k+k)(2k+1)(2k+2)

 。(k+1)(k+2)…(k+k)·2(2k+1)

 。2k·1·3…(2k-1)·2(2k+1)

 。2k+1·1·3…(2k-1)(2k+1)

  即當(dāng)n=k+1時(shí),等式也成立.

  由(1)、(2)可知,對(duì)一切n∈N*,等式成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)對(duì)n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點(diǎn)與y=fn+1(x)圖象的左端點(diǎn)重合;并回答這些端點(diǎn)在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個(gè)公共點(diǎn),試將kn表示成n的函數(shù).
(3)對(duì)n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時(shí),f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實(shí)數(shù)解的個(gè)數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明“1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
”時(shí),由n=k的假設(shè)證明n=k+1時(shí),如果從等式左邊證明右邊,則必須證得右邊為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=(1+λ)-λan,其中λ為常數(shù),且λ≠-1,0,n∈N+
(1)證明:數(shù)列{an}是等比數(shù)列.
(2)設(shè)數(shù)列{an}的公比q=f(λ),數(shù)列{bn}滿足b1=
1
2
,bn=f(bn-1)(n∈N+,n≥2),求數(shù)列{bn}的通項(xiàng)公式.
(3)設(shè)λ=1,Cn=an(
1
bn
-1)
,數(shù)列{Cn}的前n項(xiàng)和為Tn,求證:當(dāng)n≥2時(shí),2≤Tn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明“當(dāng)n 為正奇數(shù)時(shí),xn+yn能被x+y整除”,在第二步時(shí),正確的證法是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

某學(xué)生在證明等差數(shù)列前n項(xiàng)和公式時(shí),證法如下:

(1)當(dāng)n=1時(shí),S1=a1顯然成立.

(2)假設(shè)n=k時(shí),公式成立,即

Sk=ka1+,

當(dāng)n=k+1時(shí),

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+d

=(k+1)a1+d.

∴n=k+1時(shí)公式成立.

∴由(1)(2)可知對(duì)n∈N+,公式成立.

以上證明錯(cuò)誤的是( 。

A.當(dāng)n取第一個(gè)值1時(shí),證明不對(duì)

B.歸納假設(shè)寫法不對(duì)

C.從n=k到n=k+1的推理中未用歸納假設(shè)

D.從n=k到n=k+1的推理有錯(cuò)誤

查看答案和解析>>

同步練習(xí)冊(cè)答案