已知正項(xiàng)等比數(shù)列{an}滿足a1a3=16,a5=32
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)令bn=log2an,求數(shù)列{bn}的前n項(xiàng)和.
解由已知得:
,∵數(shù)列為正項(xiàng)數(shù)列,∴a
2=4,
設(shè)其公比為q,則q
3=
=8,∴q=2,又
=2,
∴數(shù)列{a
n}的通項(xiàng)公式a
n=2•2
n-1=2
n(2)由(1)知:b
n=log
2a
n=log
22
n=n,∴b
n+1-b
n=1
∴數(shù)列{b
n}是以b
1=1為首項(xiàng),1為公差的等差數(shù)列,
∴其前n項(xiàng)和S
n=
分析:(1)由等比數(shù)列的性質(zhì)和題意可得a
2=4,進(jìn)而可得公比和首項(xiàng),可得通項(xiàng)公式;
(2)由(1)可得數(shù)列{b
n}的通項(xiàng),可知為等差數(shù)列,由等差數(shù)列的求和公式可得答案.
點(diǎn)評(píng):本題為等差數(shù)列好等比數(shù)列的綜合應(yīng)用,屬基礎(chǔ)題.