【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)證明:;
(2)求平面與平面所成銳二面角的余弦值;
(3)點是線段上的動點,當(dāng)直線與所成的角最小時,求線段的長.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)在四棱錐中, 平面,得到,由四邊形為直角梯形,得到,再由線面垂直的判定定理,證得平面,進而得到.
(2)以為原點,以所在的直線分別為軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.
(3)由(2),設(shè),利用換元法求得,結(jié)合在上的單調(diào)性,即可計算得到結(jié)論.
(1)由題意,在四棱錐中,平面,
因為平面,所以,
又由四邊形為直角梯形,所以,
因為,且平面,
所以平面,
又因為平面,所以.
(2)以為原點,以所在的直線分別為軸建立空間直角坐標(biāo)系,
可得,
由題意,可得,又由,可得平面,
所以是平面的一個法向量,
又由,
設(shè)平面的法向量為,
由,取,可得,
所以,
所以平面與平面所成二面角的余弦值為.
(3)由(2)可得,設(shè),
又,則,
又,從而,
設(shè),
則,
當(dāng)且僅當(dāng)時,即時,的最大值為,
因為在上是減函數(shù),此時直線與所成的角取得最小值,
又因為,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=x+4,動圓⊙O:x2+y2=r2(1<r<2),菱形ABCD的一個內(nèi)角為60°,頂點A、B在直線l上,頂點C、D在⊙O上.當(dāng)r變化時,求菱形ABCD的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】,,…,是一個數(shù)列,對每個,,.如果,兩數(shù)不同,寫;如果,兩數(shù)相同,寫.于是得到一個新數(shù)列,,…,,其中.重復(fù)上述方法,得到一個由0及1兩個數(shù)字組成的三角形數(shù)表,最后一行僅一個數(shù)字,求這張數(shù)字表中1的和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類似于平面直角坐標(biāo)系,定義平面斜坐標(biāo)系:設(shè)數(shù)軸、的交點為,與、軸正方向同向的單位向量分別是、,且與的夾角為,其中,由平面向量基本定理:對于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對,使得,把叫做點在斜坐標(biāo)系中的坐標(biāo),也叫做向量在斜坐標(biāo)系中的坐標(biāo),記為,在平面斜坐標(biāo)系內(nèi),直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標(biāo)系內(nèi)相應(yīng)概念以相同方式定義,如時,方程表示斜坐標(biāo)系內(nèi)一條過點,且方向向量為的直線.
(1)若,,,求;
(2)若,已知點和直線;
①求的一個法向量;
②求點到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線方程經(jīng)過兩條直線與的交點.
(1)求垂直于直線的直線的方程;
(2)求與坐標(biāo)軸相交于兩點,且以為中點的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(4,0)、B(1,0),動點M滿足|AM|=2|BM|.
(1)求動點M的軌跡C的方程;
(2)直線l:x+y=4,點N∈l,過N作軌跡C的切線,切點為T,求NT取最小時的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示.
組號 | 分組 | 回答正確 | 回答正確的人數(shù) |
第1組 | 5 | 0.5 | |
第2組 | 0.9 | ||
第3組 | 27 | ||
第4組 | 0.36 | ||
第5組 | 3 |
(Ⅰ) 分別求出的值;
(Ⅱ) 從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)現(xiàn)有一個直角梯形水產(chǎn)養(yǎng)殖區(qū)ABCD,∠ABC=90°,AB∥CD,AB=800m,BC=1600m,CD=4000m,在點P處有一燈塔(如圖),且點P到BC,CD的距離都是1200m,現(xiàn)擬將養(yǎng)殖區(qū)ACD分成兩塊,經(jīng)過燈塔P增加一道分隔網(wǎng)EF,在△AEF內(nèi)試驗養(yǎng)殖一種新的水產(chǎn)品,當(dāng)△AEF的面積最小時,對原有水產(chǎn)品養(yǎng)殖的影響最。O(shè)AE=d.
(1)若P是EF的中點,求d的值;
(2)求對原有水產(chǎn)品養(yǎng)殖的影響最小時的d的值,并求△AEF面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,對于定義域內(nèi)的任意實數(shù),有成立,且時,.
(1)當(dāng)時,求函數(shù)的最大值;
(2)當(dāng)時,求函數(shù)的最大值;
(3)已知(實數(shù)),求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com