已知數(shù)列
,首項a
1 =3且2a
n+1="S"
n?S
n-1 (n≥2).
(1)求證:{
}是等差數(shù)列,并求公差;
(2)求{a
n }的通項公式;
(3)數(shù)列{a
n }中是否存在自然數(shù)k
0,使得當自然數(shù)k≥k
0時使不等式a
k>a
k+1對任意大于等于k的自然數(shù)都成立,若存在求出最小的k值,否則請說明理由.
(1)
(2)
(3)3
試題分析:解:⑴由已知當
⑵
⑶
點評:解決的關鍵是通過數(shù)列的遞推關系來分析得到證明等差數(shù)列,同事借助于關系式得到{a
n },然后借助于不等式來得到參數(shù)的范圍,屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
若稱
為n個正數(shù)a
1+a
2+…+a
n的“均倒數(shù)”已知數(shù)列{a
n}的各項均為正,且其前n項的“均倒數(shù)”為
則數(shù)列{a
n}的通項公式為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
數(shù)列
中,
,那么此數(shù)列的前10項和
=
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知各項均為正數(shù)的數(shù)列{a
}滿足a
=2a
+a
a
,且a
+a
=2a
+4,其中n∈N
.
(Ⅰ)若b
=
,求數(shù)列{b
}的通項公式;
(Ⅱ)證明:
+
+…+
>
(n≥2).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
個正數(shù)排成
行
列:
其中每一行的數(shù)由左至右成等差數(shù)列,每一列的數(shù)由上至下成等比數(shù)列,并且所有公比相等,已知
,
,
,則
=
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列{an},Sn為它的前n項的和,已知a1=-2,an+1=Sn,當n≥2時,求:an和Sn.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的前
項和為
,且
.數(shù)列
為等比數(shù)列,且
,
.
(1)求數(shù)列
,
的通項公式;
(2)若數(shù)列
滿足
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的前
項和為
.
(Ⅰ)計算
;
(Ⅱ)根據(jù)(Ⅰ)所得到的計算結(jié)果,猜想
的表達式,不必證明.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分) 已知:等差數(shù)列
,
,前
項和為
.各項均為正數(shù)的等比數(shù)列列
滿足:
,
,且
.
(1)求數(shù)列
與
的通項公式;
(Ⅱ)求
查看答案和解析>>