【題目】如圖,在四棱錐中,側(cè)面底面,且 , , 的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)

【解析】試題分析:(1)根據(jù)條件可得, 兩兩垂直,因此可建立空間直角坐標(biāo)系,然后將平面的問(wèn)題轉(zhuǎn)化成用向量證明, 的問(wèn)題;(2)求出平面,平面的法向量,利用兩向量的夾角求出二面角的平面角。

試題解析:

(Ⅰ)證明:因?yàn)閭?cè)面底面,且, ,

所以, ,

如圖,以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線, , 軸, 軸, 軸建立空間直角坐標(biāo)系.

設(shè), 的中點(diǎn),則有 , , , ,

于是 , ,

因?yàn)?/span>, ,

所以, ,且,

因此平面

(Ⅱ)由(Ⅰ)可知平面的一個(gè)法向量為

設(shè)平面的法向量為 ,

, ,

所以

不妨設(shè),則

,

由圖形知,二面角為鈍角,

所以二面角的余弦值為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:

喜歡數(shù)學(xué)課

不喜歡數(shù)學(xué)課

合計(jì)

30

60

90

20

90

110

合計(jì)

50

150

200

經(jīng)計(jì)算K2≈6.06,根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有(填百分?jǐn)?shù))的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= 是(﹣∞,+∞)上的減函數(shù),那么a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】證明f(x)=﹣x2+3在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)xi和年銷售量yii=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及下面一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中 , .
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線vαβu的斜率和截距的最下二乘估計(jì)分別為 , .
(1)根據(jù)散點(diǎn)圖判斷,yabx 哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)zx,y的關(guān)系為z=0.2yx.根據(jù)(2)的結(jié)果回答下列問(wèn)題:
①年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
②年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時(shí)看燈塔B在貨輪的北偏東120°.(要畫(huà)圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的拆線圖.

(1)由拆線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預(yù)測(cè)公司2017年4月份(即時(shí))的市場(chǎng)占有率;

(2)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:

車型 報(bào)廢年限

1年

2年

3年

4年

總計(jì)

20

35

35

10

100

10

30

40

20

100

經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率.如果你是 公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)若直線是曲線與曲線的公切線,求;

(2)設(shè),若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案