【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin(θ+ )=
a,曲線C2的參數(shù)方程為
(θ為參數(shù)).
(1)求C1的直角坐標(biāo)方程;
(2)當(dāng)C1與C2有兩個公共點(diǎn)時,求實(shí)數(shù)a取值范圍.
【答案】
(1)解:曲線C1的極坐標(biāo)方程為ρsin(θ+ )=
a,即ρsinθ+ρcosθ=a,
∴C1的直角坐標(biāo)方程為x+y﹣a=0;
(2)解:曲線C2的參數(shù)方程為 (θ為參數(shù)).普通方程為(x+1)2+(y+1)2=1,
∵C1與C2有兩個公共點(diǎn),
∴圓心到直線的距離d= ≤1,
∴﹣2﹣ ≤a≤2+
【解析】(1)利用極坐標(biāo)與直角坐標(biāo)方程互化方法,求C1的直角坐標(biāo)方程;(2)當(dāng)C1與C2有兩個公共點(diǎn)時,圓心到直線的距離d≤r,即可求實(shí)數(shù)a取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓
的左、右焦點(diǎn),離心率為
,
分別是橢圓的上、下頂點(diǎn),
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于相異兩點(diǎn)
,且滿足直線
的斜率之積為
,證明:直線
恒過定點(diǎn),并采定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
分別為
的中點(diǎn),且
.
(1)證明:;
(2)證明:直線與平面
相交;
(3)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若數(shù)列的前n項(xiàng)和
,求數(shù)列
的通項(xiàng)公式
.
(2)若數(shù)列的前n項(xiàng)和
,證明
為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. 命題“”的否定是:“
”
B. 命題“若,則
”的否命題為“若
,則
”
C. 若命題為真,
為假,則
為假命題
D. “任意實(shí)數(shù)大于”不是命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的函數(shù)
的導(dǎo)函數(shù),且
,則
的大小關(guān)系為( )
A. a<b<c B. b<a<c C. c<a<b D. c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4個不同的小球,全部放入4個不同的盒子內(nèi),恰好有兩個盒子不放球的不同放法的總數(shù)為____________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本的平均數(shù)是
,方差是
,則對樣本
,下列結(jié)論正確的是 ( )
A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25
C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com