【題目】設(shè)f'(x)是函數(shù)f(x)的導(dǎo)數(shù),f'(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f'(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)f(x)的拐點(diǎn).某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點(diǎn),任何一個(gè)三次函數(shù)都有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心,
設(shè)函數(shù)g(x)=x3﹣3x2+4x+2,利用上述探究結(jié)果
計(jì)算: =
【答案】76
【解析】解:由g(x)=x3﹣3x2+4x+2,得:g′(x)=3x2﹣6x+4,g″(x)=6x﹣6,
令g″(x)=0,解得:x=1,
∴函數(shù)g(x)的對(duì)稱中心是(1,4),
∴g(2﹣x)+g(x)=8,
故設(shè) =m,
則g( )+g( )+g( )+…+g( )=m,
兩式相加得:8×19=2m,解得:m=76,
所以答案是:76.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cos ﹣1), =( sin ,cos2 ),函數(shù)f(x)= +1.
(1)若x∈[ ,π],求f(x)的最小值及對(duì)應(yīng)的x的值;
(2)若x∈[0, ],f(x)= ,求sinx的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 與 (其中 )在 上的單調(diào)性正好相反,回答下列問(wèn)題:
(1)對(duì)于 , ,不等式 恒成立,求實(shí)數(shù) 的取值范圍;
(2)令 ,兩正實(shí)數(shù) 、 滿足 ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)a1 , a2 , …,an(n∈N*)組成集合An={a1 , a2 , …,an},從集合An中任取k(k=1,2,3,…,n)個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為Tk(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),例如:對(duì)于數(shù)列{2n﹣1},當(dāng)n=1時(shí),A1={1},T1=1;n=2時(shí),A2={1,3},T1=1+3,T2=13;
(1)若集合An={1,3,5,…,2n﹣1},求當(dāng)n=3時(shí),T1 , T2 , T3的值;
(2)若集合An={1,3,7,…,2n﹣1},證明:n=k時(shí)集合Ak的Tm與n=k+1時(shí)集合Ak+1的Tm(為了以示區(qū)別,用Tm′表示)有關(guān)系式Tm′=(2k+1﹣1)Tm﹣1+Tm , 其中m,k∈N*,2≤m≤k;
(3)對(duì)于(2)中集合An . 定義Sn=T1+T2+…+Tn , 求Sn(用n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=f'(1)ex﹣1﹣f(0)x+ 的導(dǎo)數(shù),e為自然對(duì)數(shù)的底數(shù))g(x)= +ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及極值;
(Ⅱ)若f(x)≥g(x),求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 =(1,0), =(1,1),(x,y)= ,若0≤λ≤1≤μ≤2時(shí),z= (m>0,n>0)的最大值為2,則m+n的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=|2x﹣1|+|5x﹣1|
(1)求f(x)>x+1的解集;
(2)若m=2﹣n,對(duì)m,n∈(0,+∞),恒有 成立,求實(shí)數(shù)x的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大。
(2)四棱錐A1﹣B1BCC1的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com