【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論

殘差平方和越小的模型,擬合的效果越好;

用相關(guān)指數(shù)來(lái)刻畫回歸效果越小說(shuō)明擬合效果越好;

在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位

若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng),以上正確說(shuō)法的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

由題意逐一考查所給命題的真假即可.

由題意可知:研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析時(shí):

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來(lái)刻畫回歸效果,越大說(shuō)明擬合效果越好,故②錯(cuò);

③在回歸直線方程,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位

④相關(guān)系數(shù)為正值,則兩變量之間正相關(guān),相關(guān)系數(shù)為負(fù)值,則兩變量之間負(fù)相關(guān),相關(guān)系數(shù)的絕對(duì)值越接近1,則變量之間的相關(guān)性越強(qiáng).若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng).

綜上可得,正確說(shuō)法的個(gè)數(shù)是3.

本題選擇C選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】環(huán)保部門對(duì)5家造紙廠進(jìn)行排污檢查,若檢查不合格,則必須整改,整改后經(jīng)復(fù)查仍然不合格的,則關(guān)閉.設(shè)每家造紙廠檢查是否合格是相互獨(dú)立的,且每家造紙廠檢查前合格的概率是 ,整改后檢查合格的概率是 ,求:
(Ⅰ)恰好有兩家造紙廠必須整改的概率;
(Ⅱ)至少要關(guān)閉一家造紙廠的概率;
(Ⅲ)平均多少家造紙廠需要整改?(其中( 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館在裝修時(shí),為了美觀,欲將客房的窗戶設(shè)計(jì)成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個(gè)區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計(jì)劃將矩形ABCD區(qū)域設(shè)計(jì)為可推拉的窗口.

(1)若窗口ABCD為正方形,且面積大于 m2(木條寬度忽略不計(jì)),求四根木條總長(zhǎng)的取值范圍;
(2)若四根木條總長(zhǎng)為6m,求窗口ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校1800名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,抽取其中50名學(xué)生組成一個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組……,第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)請(qǐng)估計(jì)學(xué)校1800名學(xué)生中,成績(jī)屬于第四組的人數(shù);

(2)若成績(jī)小于15秒認(rèn)為良好,求該樣本中在這次百米測(cè)試中成績(jī)良好的人數(shù);

(3)請(qǐng)根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)某校高二文科學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)試根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)記憶力為14的學(xué)生的判斷力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的直角坐標(biāo)方程為,曲線的方程為,現(xiàn)建立以為極點(diǎn)軸的正半軸為極軸的極坐標(biāo)系

(1)寫出直線極坐標(biāo)方程,曲線的參數(shù)方程;

(2)過(guò)點(diǎn)平行于直線的直線與曲線交于、兩點(diǎn),若,求點(diǎn)軌跡的直角坐標(biāo)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是 (t為參數(shù)).設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3.D是線段BC的中點(diǎn).

(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1﹣A1D﹣C1的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

分類

積極參加

班級(jí)工作

不太主動(dòng)參

加班級(jí)工作

總計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

總計(jì)

24

26

50

(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案